一、基于图像处理的茶叶识别
实现自动化采茶,首先必须解决的是茶树嫩芽的精准识别。近年来,随着计算机技术的发展和应用,基于图像处理的茶叶嫩芽的准确识别成为研究的热点。
1. 基于颜色空间的传统图像处理算法
由于茶叶嫩芽与老叶、树干存在明显颜色差异,可利用颜色特征提取出图像中的嫩芽区域,因此早期的茶叶嫩芽分割研究大多是基于颜色特征的。基于颜色空间的传统图像处理算法,其主要过程包括图像预处理、颜色特征选取与分割等步骤。
2. 基于传统机器学习的识别方法
为了进一步解决自然条件下茶叶分割易受老叶、树枝、土壤等外界环境影响,茶叶互相遮挡与重叠的问题,后续研究中引入了机器学习的方法,通过提取并综合各种特征样本数据进行训练来识别检测,常见的嫩芽识别方法是基于颜色、纹理、形状等特征,结合使用诸如K均值聚类法、支持向量机方法、贝叶斯判别方法以及级联分类器等。基于传统机器视觉的识别方法仍依赖图像预处理与数据转换,前期处理如不合理将会严重影响模型的精度。
3. 基于深度学习的识别方法
基于深度学习的算法在复杂背景下具有较高的精度,为复杂背景下茶叶嫩芽的智能化采摘设备的研究提供了基础。可以分为3类,分别是分类算法、目标检测算法和语义分割算法。基于深度学习的分类算法是对1副图像进行分类,判别出图像是否是嫩芽或者识别图像中的嫩芽的状态,如芽叶开面状态、是否处于可采摘的状态等,该方法具有较好的识别效果,不仅能准确识别茶叶嫩芽,同时还可区分不同嫩芽的状态,其可满足自然光照下茶叶嫩芽识别要求,实用性较好。但基于深度学习的方法依赖大样本,同时检测效率较低。因此还需要进一步开展茶树芽叶检测研究,增加芽叶图像数量,开发速度更快、精度更高、稳定性更优的算法。