2.3.1.1 流域水资源系统概化
鉴于水资源系统的复杂性,水资源配置需要根据其目的与需要,对水资源系统的特性和演变规律做适当的概化。概化是指将真实的水资源系统转化为计算机所能识别的网络系统。概化的原则是指要能够比较真实地反映出水资源计算分区的水量传递,并且有利于揭示供需矛盾;同时,也要适应基础资料与数据源的准确程度,并且便于分析计算。
根据南四湖流域情况及水资源计算分区,将南四湖流域水资源系统概化为由节点和有向线段组合的网络,构成了水资源系统网络图(图2.4)。图中节点包括重要计算单元、河渠道等,各种水源的供水都是在各计算单元的基础上进行的,有向线段代表天然河道或人工输水渠道,它们反映节点之间的水流传输关系。
图2.4 南四湖流域水资源系统网络示意图
2.3.1.2 水资源优化配置模型描述
(1)配置方法
水资源优化配置需要用水资源系统分析的方法来解决。在水资源系统分析中,数学模型起着十分重要的作用,水资源优化配置问题可通过建立数学模型来解决。水资源系统的数学模型一般包括目标函数和约束条件两部分。对于不同的系统和不同的水资源问题,数学模型是不同的。数学模型通常是根据系统的实际需要来设计目标函数,使目标函数值达到最大或者最小,即系统达到最佳状态时得到的水资源优化配置方案。
水资源优化配置的目的是为了支撑全流域社会、经济、环境的全面协调和持续发展。水资源利用是多目标的,水资源优化配置就是多目标优化问题,其目标不是追求某一方面或对象的效益最好,而应追求整体效益最好。因此,水资源优化配置问题实际上是一种复杂的多目标决策问题。
根据南四湖流域自然地理与人文地理特点,采用多目标规划模型对流域的水资源进行合理配置。水资源优化配置多目标问题一般表达式如下:
变环境条件下的水资源保护与可持续利用研究
式中:x为决策变量;fp(x)为p个独立的目标函数向量;gi(x)为约束条件组;bi为右端常数项向量。
(2)目标函数
目标函数表征模型系统的目标要求。针对研究的问题不同,要求目标函数实现最大化或最小化。根据水资源优化配置的科学内涵,水资源优化配置是通过科学合理分配有限的水资源,以解决水资源的短缺和用水竞争问题,更好地满足生活、工农业生产及生态环境的需求。
对于南四湖流域来说,水资源配置的主要目的是着重研究如何联合运用多种水源(包括当地水源和外调水源),以缓解水资源短缺而引起的争水问题,结合本流域“十一五”规划要求,最终设定了以下2个目标函数。
1)经济效益目标。以区域供水带来的直接经济效益最大来表示。函数表达形式为
变环境条件下的水资源保护与可持续利用研究
式中: 、 为独立水源i、公共水源c向k子区j用户的供水量,万m3; 、 为独立水源i、公共水源c向k子区j用户供水的效益系数,元/m3; 、 为独立水源i、公共水源c向k子区j用户供水的费用系数,元/m3; 、 为k子区独立水源i、公共水源c的供水次序系数; 为第k子区的第j用户的用水公平系数;βk为第k子区的权重系数。
2)社会效益目标。由于社会效益不容易度量,而区域缺水量的大小或缺水程度会直接影响到社会的发展和稳定,故采用区域供水系统总缺水量最小来间接反映社会效益。函数表达形式为
变环境条件下的水资源保护与可持续利用研究
式中: 为k子区j用户的需水量,万m3, 、 分别为独立水源i、公共水源c向k子区j用户的供水量,万m3。
(3)约束条件
约束条件表征目标函数的限制条件。推求目标函数达到最优时的决策变量,应是在约束条件下求得的。在水资源优化配置中,产水量、供水量、输水建筑物的过水能力等都可能成为约束条件。
1)供水量约束。根据资源节约和有效利用的原则,不同水源供给计算分区各用水户的总水量不应多于其可供水量,如下式
变环境条件下的水资源保护与可持续利用研究
式中: 、 分别为规划水平年内独立水源i、公共水源c对k子区第j用户的供水量; 、Wc分别为k子区独立水源i及公共水源c的可供水量。
2)供水能力约束。各分区的输水河道及泵站都有各自的输水能力。因此,在水资源配置计算时,供水水源对计算分区各用水户的供水量不应大于其最大输水能力,如下式:
变环境条件下的水资源保护与可持续利用研究
式中:Qmax,ik、Qmax,ck分别为规划水平年内独立水源i及公共水源c对第k水资源分区输水能力。
3)部门用水量约束。各水源提供给各分区各用水户的水量不低于该部门的最低用水量,如下式:
变环境条件下的水资源保护与可持续利用研究
式中: 、 分别为规划水平年内k子区j用户的最小需水量和最大需水量。
4)变量非负约束。各个分区的任何用水户的用水量都不为负,所能提供的水量能满足每个用水户的需要,如下式:
变环境条件下的水资源保护与可持续利用研究
式中: , 分别表示独立水源i、公共水源c向k子区第j用户供水量。
2.3.1.3 模型的建立
将上述目标函数及各种约束条件组合在一起,即构成南四湖流域水资源优化配置的总体模型
变环境条件下的水资源保护与可持续利用研究
变环境条件下的水资源保护与可持续利用研究
式中:各符号的意义同式(2.10)至式(2.17)。
该水资源优化分配模型充分考虑了流域水资源的可持续利用和经济社会的可持续发展,以满足流域供水经济效益最大及水资源系统总缺水量最小为目标,并在流域划分水资源计算分区中,考虑各用水户及各供水水源之间的相互协调作用,使得相应的水资源分配最优。
2.3.1.4 模型参数确定
南四湖流域供水水源有4个,包括本地地表水、地下水和跨流域调水。其中,跨流域调水包括引黄河水和南水北调工程引长江水。据流域水资源计算分区划分(图2.3),计算分区为4个。其中,引长江水供给所有分区,为全区公共水源;引黄河水分别供给济宁及湖区和湖西菏泽区,为两分区公共水源;各分区的当地地表水和地下水为单分区水源。
考虑流域内各计算分区的实际情况,将用水部门具体划分为生活用水、工业用水、农业用水和生态环境用水等4个用水部门。
在水资源优化配置模型中,以k个计算分区内i水源提供给j用水户的供水量 作为决策变量。由上述分析,南四湖流域计算分区数k=4;其中,各分区独立水源数i=2,公共水源数c=1或2,用水部门数j=4,可得南四湖流域水资源优化配置模型拥有56个决策变量,44个约束条件。
(1)用水部门公平系数
确定用水优先权是模型分析计算的前提。根据流域用水部门的性质和重要程度,按照“先生活,后生产”的原则,在同一计算分区中把用水部门划分为不同的级别。
据《山东省水利发展和改革“十一五”规划》(2006年)、《江苏省水利发展“十一五”规划》(〔2006〕147号文)和《山东省经济发展“十一五”规划》(2006年),流域内经济发展以工业为主,兼顾农业发展,优先保障生活用水,然后保障工业用水,最后安排农业用水,使其供水保证率分别达到98%以上、75%~90%、50%~75%。目前南四湖流域水污染较为严重[5,27],生态系统遭到破坏,在保障生活用水的同时,还要充分考虑生态环境用水。
由此,将南四湖流域各用水部门划分为如下四个等级:第一级为生活用水,第二级为生态环境用水,第三级为工业用水,第四级为农业用水。当发生缺水时,级别低的用水部门先缩减供水,以确保级别高的用水户正常供水。
表示为第k子区、第j用水部门相对其他用水部门优先得到水资源供给的重要程度,它与优先得到供水的次序有关,可将各用水部门用水的优先程度转化为[0,1]区间上的系数。根据用水部门的性质和重要程度, 可以由决策者参照下式并根据流域水资源实际情况确定
变环境条件下的水资源保护与可持续利用研究
式中: 为第k水资源区第j用水部门的用水次序序号; 为第k水资源区用水次序序号最大值,对南四湖流域而言, 。
经计算,各用水户的用水公平系数 分别为生活用水0.4,生态用水0.3,工业用水0.2,农业用水0.1。
(2)供水次序系数
供水次序系数 可反映k子区i水源相对于其他水源供水的优先程度。对于当地水,根据各水源调节能力的不同,将当地水资源的供水次序划分成不同的优先级,具有较低调节能力的水源先供水,具有较高调节能力的水源后供水。供水次序为河道提引河水和小型塘坝供水、山区水库供水,地下水供水;对于外调水,由于其成本相对较高,因而通常作为当地水资源的补充水源。本节根据外调水的成本和实际情况,在当地水源供水的基础上,确定外调水的供水次序为先黄河水供水,再长江水供水。
根据以上原则,确定南四湖流域各水源的供水次序为:①地表水;②地下水;③引黄河水;④引长江水。供水次序系数 可参照 的计算公式确定。
对于济宁及湖区、湖西菏泽区两水资源计算分区, ,经计算,地表水、地下水、引黄河水和引长江水的供水次序系数 分别为0.4,0.3,0.2,0.1。
对于湖东枣庄区和湖西徐州区两水资源计算分区, ,经计算,地表水、地下水和引长江水的供水次序系数 分别为0.5,0.33,0.17。
(3)供水效益系数及费用系数
1)效益系数。水资源优化配置数学模型,涉及各类水源的供水经济效益,是分析水资源优化配置的主要依据条件。水资源优化配置过程中,在满足生活用水、生态环境用水及各类生产部门用水最小需水量的前提下,将水资源量尽可能分配到经济效益较大的用水部门中去,最大限度的发挥水资源的经济效益;同时,要使整个研究区的缺水量最小。
南四湖流域农业生产用水的经济效益近年来有所增长,据统计,随着节水灌溉方式的普及,农业生产用水的经济效益显著提高。目前,南四湖流域农业生产用水的效益系数在15~20元/m3之间,至规划水平年(2015年),农业生产用水的效益将成倍增长。工业用水经济效益较大,根据经济发展水平,工业用水效益多在150~250元/m3之间。
在计算过程中,农业用水、工业用水的经济效益系数采用山东省和江苏省统计部门提供的数据进行计算;生活、环境的效益是间接而复杂的,不仅有经济方面的因素,还有社会效益存在,其效益系数较难确定。根据生活、生态环境用水优先满足的配置原则,在计算中赋以较大的权值,用以表示其效益系数。由此,得出南四湖流域规划水平年(2015年)各用水部门的用水效益系数,见表2.17。
表2.17 南四湖流域2015年各用水部门效益系数 单位:元/m3
2)费用系数[57,62,63]。不同水源供水给各用水部门费用系数,参考水费征收标准确定。对有资料水源工程,根据资料计算确定;缺乏资料时,参考邻近地区同类水源工程选取。
a.从水厂取水的用户以水价作为其费用系数。
b.从自备井取水的用户以水资源费、污水处理费与提水成本之和作为其费用系数。
c.从水利工程取水的用户以水资源费、污水费与输水成本之和作为其费用系数。
d.农业用户的费用系数参考水费征收标准确定。
据以上原则,并结合南四湖流域南水北调东线工程调水费用进行分析,得出流域规划水平年(2015年)供水费用系数,见表2.18。
表2.18 南四湖流域2015年供水费用系数 单位:元/m3
(4)需水量上下限
记k子区j用户的需水量上、下限分别为 、 。
其确定方法如下:
1)生活需水量上下限。根据生活用水特性,其上、下限均取为生活需水量,即
变环境条件下的水资源保护与可持续利用研究
式中: 、 分别为生活用水的上下限; 为规划水平年的生活需水量。
2)环境需水量上下限。考虑到人们对环境用水的重视,环境用水的上下限也均取为环境需水量,即
变环境条件下的水资源保护与可持续利用研究
式中: 、 分别为环境用水的上下限; 为规划水平年的环境需水量。
3)工业需水量上下限。考虑工业用水的特征,工业需水量的上下限按下式取
变环境条件下的水资源保护与可持续利用研究
式中: 、 分别为工业用水上下限; 为工业需水量。
4)农业需水量上下限。农业灌溉需水量的上下限需要根据有效灌溉面积、保证灌溉面积和综合灌溉定额来确定,即
变环境条件下的水资源保护与可持续利用研究
式中: 、 分别为k子区农业需水量的上下限; 、 分别为k子区有效灌溉面积和保证灌溉面积;Gk为k子区的综合灌溉定额。据式(2.19)~式(2.22),可计算出南四湖流域各计算分区不同用水部门需水量上下限,见表2.19。
表2.19 南四湖流域各计算分区不同部门需水量上下限 单位:万m3
(5)权重系数
目标权重系数λp表示p个目标对其他目标而言的重要性程度;子区权重系数βk表示k子区对整个区域而言的重要性程度。本节利用层次分析法确定权重系数βk和λp。
1)层次分析法求解的基本思路。层次分析法是美国运筹学家T.L.Saaty于20世纪70年代提出的一种多目标决策分析方法,属于定性与定量分析相结合的方法,是一种将决策者对复杂系统的决策思维过程模型化、定量化的过程。应用层次分析法,决策者可以把复杂的问题分解为若干层次,每个层次包含若干因素;在各层次、因素间进行比较和计算,可以得到表示方案重要性程度的权重,为最优方案的选择提供依据。层次分析法适用于多目标、多层次的非结构化、半结构化决策问题,在系统评价、方案比较等方面得到了广泛的应用。在流域水资源规划方案、工程设计方案、工程施工方案等的比较与优选中,均可以考虑采用层次分析法[56,64]。
本节将应用层次分析法确定经济效益和社会效益两个子目标的权重系数λp及四个水资源计算分区在整个流域中的权重系数βk。确定因子权重的具体步骤如下[66~68]:
a.建立层次结构模型,如图2.5所示。
图2.5 南四湖流域多目标优化递阶层次结构图
b.构造判断矩阵。对于建立的层次结构模型,需要逐层计算相关因素间的重要性,并予以量化,构成判断矩阵,作为进一步分析的基础。对各因素因子间两两进行比较,用bij表示针对上一层次的某因素而言,本层次与之有关因素之间的相对重要性,引用Saaty提出的9级标度法进行量化,见表2.20。
表2.20 Saaty标度法及其含义
c.层次单排序及一致性检验。
(a)计算各指标权重值。
第一步,计算判断矩阵中每行元素的几何平均值
变环境条件下的水资源保护与可持续利用研究
第二步,将 归一化,即
变环境条件下的水资源保护与可持续利用研究
可得到近似特征向量ω=[ω1,ω2,…,ωn]T
第三步,计算判断矩阵的最大特征值λmax
变环境条件下的水资源保护与可持续利用研究
式中:(AW)i为向量BW的第i个元素
(b)判断矩阵偏差一致性检验。由于判断矩阵的构造是由决策人员的定性分析转入定量描述的,因而无法保证完全一致性,需进行检验,目的是使差异不致过大。
由判断矩阵的偏差一致性指标CI的表达式
CI=(λmax-n)/(n-1) (2.26)
引入判断矩阵的随机一致性比率CR=CI/RI,判断矩阵是否具有满意的一致性,其中RI为平均随机一致性指标,其值可从表2.21查得。若CR<0.1,则认为判断矩阵具有满意的一致性;否则,需要对判断矩阵进行适当调整直到具有满意的一致性为止。
表2.21 平均随机一致性指标RI
d.层次总排序及一致性检验。从层次结构模型的第二层开始,逐层计算各层相对于最高层相对重要性的排序权值,称为层次总排序。
由上述步骤得到每一个要素相对于上一层次对应要素的权重值后,通过层次总排序计算出每一个评价指标相对于总目标整个研究区水资源开发利用评价的权重值。最后,计算各层次所有元素对总目标相对重要性的排序权值。
层次总排序后同样要进行一致性检验,假设第K层层次总排序权值为αi(i=1,2,…, n),一致性指标为CIi,相应的平均随机一致性指标是RIi,则总排序的一致性指标
变环境条件下的水资源保护与可持续利用研究
总排序的平均随机一致性指标
变环境条件下的水资源保护与可持续利用研究
当CR=CI/RI<0.1时,认为层次总排序的一致性满意,否则,重新调整判断矩阵,直到满意。
2)权重求解计算。按照以上层次分析法的求解步骤,对南四湖流域优化配置中的各权重值进行求解。
a.目标权重系数λp确定。
(a)如图2.5所示的南四湖流域水资源系统规划的层次结构模型,按照各因素的类别及支配关系,分为目标层、准则层、措施层。目标层为流域水资源规划的总体目标,即南四湖流域水资源的优化配置;准则层是为衡量总体目标能否实现的标准,模型确定了经济效益和社会效益两准则;措施层是根据流域具体情况及发展规划等所设置的若干个技术经济可行的规划方案,模型为经济效益和社会效益两准则分别设立了9个措施。
(b)对经济效益子目标(B1)和社会效益子目标(B2)在影响水资源优化配置综合评价结果的重要程度方面进行两两比较,其结果见表2.22。
其中,λmax=2,CI=0,判断矩阵具有完全一致性。对于二阶矩阵而言,总是一致的,不必检验。
表2.22 水资源优化配置综合评价下判断矩阵A-B
对措施层中的9个措施(C1~C4)、(C5~C9)在影响水资源优化配置综合评价结果的重要程度方面进行两两比较,其结果见表2.23、表2.24。
表2.23 水资源优化配置综合评价下判断矩阵B1-C
其中,λmax=4.1755,CI=0.0585,CR=0.0650<0.1,具有满意一致性。
表2.24 水资源优化配置综合评价下判断矩阵B2-C
其中,λmax=5.3522,CI=0.0881,CR=0.0786<0.1,具有满意一致性。
将所有判断矩阵进行一致性检验,由上述分析可知,判断矩阵A-B、判断矩阵B1-C和判断矩阵B2-C这三个判断矩阵均具有满意一致性。
(c)在得到每一个要素相对于上一层次对应要素的权重后,通过层次总排序,计算出每一个措施相对于总目标南四湖流域水资源优化配置综合评价权重值。计算各层次所有元素对总目标相对重要性的排序权重,总排序的结果见表2.25。
表2.25 水资源优化配置层次总排序分析结果表
续表
在层次总排序之后,利用CR=CI/RI进行整个层次的一致性检验,总排序随机一致性比率为 ,所以层次总排序具有满意的一致性。该流域应用层次分析法求解有效。
故在水资源优化配置总目标下,经济效益和社会效益两个子目标的排序权重系数λp分别为0.1667、0.8333。
在决策过程中,权重还可以与决策者交互调整,不同的权重值可得出原多目标规划问题的一个非劣解,为决策者提供更多的有关目标权衡比较的信息,以便选择最佳权衡解[56]。
b.子区权重系数βk确定。针对南四湖流域四个水资源计算分区(济宁及湖区、湖东枣庄区、湖西菏泽区及湖西徐州区),同样采用层次分析法确定其权重系数βk。针对该流域的具体情况,经过层次分析法分析计算后,分别拟定为β1=0.1299,β2=0.5567,β3=0.2556,β4=0.0577。
以2015年为规划水平年,将前述分析计算的各相关参数代入模型中,进行水资源优化配置多目标规划模型求解。
现代化智能灌溉技术推广困难与发展方向论文
1、 精确农业的概念及简介
20世纪后半期世界农业的高速发展,除了依靠生物技术的进步和耕地面积、灌溉面积的扩大外,基本上是在化肥与农药等化学品和矿物能源的大量投入条件下获得的。但由此引起的水土流失、土壤生产力下降、农产品和地下水污染、水体富营养化等生态环境问题,已经引起了国际社会的广泛关注,并推动了农业可持续发展和精确农业理论的产生和发展。"精确农业"是"Precision Agriculture"、"Precision Farming"、"Site-specific Farming(Agiculture)"等名词的中译。[4]精确农业是现代信息技术(RS,GIS,GPS),作物栽培管理技术,农业工程装备技术等一系列高新技术的基础上发展起来的一种重要的现代农业生产形式和管理模式,其核心思想是获取农田小区作物产量和影响作物生产的环境因素(如土壤结构、土壤肥力、地形、气候、病虫草害等)实际存在的空间和时间差异信息,分析影响小区产量差异的原因,采取技术上可行,经济上有效的调控措施,改变传统农业大面积、大样本平均投入的资源浪费作法,对作物栽培管理实施定位,按需变量投入。它包括精确播种,精确施肥,精确灌溉,精确收获这几个环节。而精确农业的兴起对合理施肥提出了新的理论和技术要求。从化肥的使用来看,化肥对粮食产量的贡献率占40%,然而即使化肥利用率高的国家,其氮的利用率也只有50%左右,磷30%左右,钾60%左右,肥料利用率低不仅使生产成本偏高,而且造成地下水和地表水污染、水果蔬菜硝酸盐含量过高等环境问题。总之施肥与农业产量、产品品质、食品和环境污染等问题密切相关。精确施肥的理论和技术将是解决这一问题的有效途径。
2、 精确施肥(变量处方施肥)
2.1精确施肥的必要性
"土壤--作物--养分"间的关系十分复杂。虽然我们已确定了作物生长中必不可少的大量元素和微量元素,但作物需求养分的程度因植物的种类不同而有差别。即使是同一种作物,不同的生长期对各种养分的需求程度差别也很大。苗期是作物的"营养临界期",虽然在养分数量方面要求不多,但是要求养分必须齐全和速效,而且数量足够。很多作物在营养"最大效率期"对某种养分需求数量最多,营养效果最好,同一作物不同养分的"最大效率期"不同,不同作物同一养分的"最大效率期"也不同。不同养分具有"养分不可替代性"即作物的产量主要受最少养分含量那个养分所限制,而这个最少的养分不能被其它养分所代替。为消除"最小养分率"的限制,大量的使用化肥,而这又造成一系列的环境问题。所以为取得良好的经济效益和环境效益,适应不同地区、不同作物、不同土壤和不同作物生长环境的需要,变量处方施肥是我们未来施肥的发展方向。
2.2精确施肥
我们认为精确施肥是将不同空间单元的产量数据与其他多层数据(土壤理化性质、病虫草害、气候等)的叠合分析为依据,以作物生长模型、作物营养专家系统为支持,以高产、优质、环保为目的的变量处方施肥理论和技术。精确施肥是信息技术(RS,GIS,GPS),生物技术,机械技术和化工技术的优化组合。按作物生长期可分为基肥精施和追肥精施,按施肥方式可分为耕施和撒施。按精施的时间性分为实时精施和时后精施。
3、理论及技术体系
3.1土壤数据和作物营养实时数据的采集
对于长期相对稳定的土壤变量参数,象土壤质地、地形、地貌、微量元素含量等,可一次分析长期受益或多年后再对这些参数做抽样复测,在我国可引用原土壤普查数据做参考。对于中短期土壤变量参数,象N,P,K,有机质、土壤水分等,这些参数时空变异性大,应以GPS定位或导航实时实地分析,也可通过遥感(RS)技术和地面分析结合获得生长期作物养分丰缺情况。这是确定基肥、追肥施用量的基础。20世纪90年代以来,土壤实时采样分析的新技术、新仪器有了长足的发展进步。
3.1.1基于土壤溶液光电比色法开发的土壤主要营养元素测定仪,在我国已有若干实用化的产品推广。
3.1.2基于近红外(NIR)多光谱分析技术、半导体多离子选择效应晶体管(ISFET)的离子敏传感技术的研究已取得了初步的进展和研究成果[5,6]。
3.1.3基于近红外(NIR)光谱技术和传输阻抗变换理论的土壤水分测量仪在我国已经研制成功[7,8]。
3.1.4基于光谱探测和遥感理论的作物营养监测技术研究也取得了一定的进展。
用植物光谱分析方法诊断植物营养水平具有快速、自动化、非破坏性等优点,但诊断专一性不够,解译精度也有待提高。在作物N营养与作物光谱特性方面,无论是多光谱被动遥感,还是激光荧光雷达主动遥感的研究和应用都已较为成熟[9,10,11],在外观未发现缺氮症状时,已能区分作物的N素营养水平。日本首先研制了叶绿素计应用于田间作物氮素营养水平诊断及指导施肥,取得了较好的效果,据日农机新闻1999年又报道了一种自动化施肥装置,在水稻生长期间,可根据其叶子进行判断,自动调节施肥量,用分光传感器分析水稻生长情况,同时用GPS系统导航,任何人都能进行操作。但植物中P、K和微量元素的营养水平与作物光谱特性的关系研究较少。国内外研究发现基于现在的仪器设备条件下,在严重缺磷时,光谱分析才能用作物磷营养诊断[12];钾只能区分3~4级营养水平[13]。但随着一系列地球观测卫星的将在近几年发射,卫星影像空间分辨率和光谱分辨率的提高,遥感技术将在作物营养监测的中扮演重要的角色。
3.2差分全球定位系统(DGPS)
无论是田间实时土样分析,还是精确施肥机的运作,都是以农田空间定位为基础的。全球定位系统(GPS)为精确施肥提供了基本条件。GPS接收机可以在地球表面的任何地方、任何时间、任何气象条件下至少获得4颗以上的GPS卫星发出的定位定时信号,而每一卫星的轨道信息由地面监测中心监测而精确知道,GPS接受机根据时间和光速信号通过三角测量法确定自己的位置。但由于卫星信号受电离层和大气层的干扰,会产生定位误差,美国提供的GPS定位误差可达100米,所以为满足精确施肥或精确农作需要,须给GPS接受机提供差分信号即差分定位系统(DGPS)。DGPS除了接收全球定位卫星信号外,还需接收信标台或卫星转发的差分校正信号。这样可使定位精度大大提高。我们在实验中用的美国GARMIN公司的GPS12XL 接受机,接收差分输入后可达到1~5的定位精度。现在民用DGPS已完全能满足精确施肥的需要。现在的研究正向着GPS-GIS-RS一体化,GPS-智能机械一体化方向发展。日本最近实验利用GPS定位插秧机、GPS定位自动施肥机,误差在10cm以内[14,15]。
3.3决策分析系统
决策分析系统是精确施肥的核心,直接影响精确施肥的技术实践成果。决策分析系统包括地理信息系统(GIS)和模型专家系统二部分。GIS用于描述农田空间属性的差异性;作物生长模型和作物营养专家系统用于描述作物的生长过程及养分需求。只有GIS和模型专家系统紧密结合,才能制定出切实可行的决策方案,这也使现在国内外GIS集成的研究热点。在精确施肥中,GIS主要用于建立土壤数据、自然条件、作物苗情等空间信息数据库和进行空间属性数据的地理统计、处理、分析、图形转换和模型集成等。作物生长模型是将作物及气象和土壤等环境作为一个整体,应用系统分析的原理和方法,综合大量作物生理学、生态学、农学、土壤肥料学、农业气象学等学科的理论和研究成果,对作物的生长发育、光合作用、器官建成和产量形成等生理过程与环境和技术的关系加以理论概括和数量分析,建立相应的数学模型。它是环境信息与作物生长的量化表现。通过作物生长模型我们可以得出任意生长时期作物对土壤生长环境的要求,以便采取相关的措施。在这方面美国的科学家们综合考虑大气-土壤-作物之间的相互作用,早在20世纪70年代研制出大型作物模拟模型CERES(覆盖了玉米、小麦、高粱、大豆、花生等12种作物),国内高亮之等系统的完成了水稻模型RICEMOD[16]。但这些模型在生理生态模拟方面仍比较简单,其机理性、适用性有待于进一步发展和提高。我国20世纪80年代就就开发了作物营养专家系统,但无论是作物肥料效应函数模型为基础的专家系统,还是测土施肥目标产量模型,都属于统计模型,不同的统计模型计算的施肥量相差3倍以上[16]。以作物生理机理为基础的作物营养模拟模型有待于进一步发展和提高。
3.4控制施肥
现在有二种形式,一是实时控制施肥。根据监测土壤的实时传感器信息,控制并调整肥料的投入数量,或根据实时监测的作物光谱信息分析调节施肥量[18,19]。二是处方信息控制施肥。根据决策分析后的电子地图提供的处方施肥信息,对田块中肥料的撒施量进行定位调控。
4.理论技术存在的问题和未来发展方向
土壤数据采集仪器价格昂贵,性能较差,不能分析一些缓效态营养元素的含量,而遥感由于空间分辨率和光谱分辨率问题,使遥感信息和土壤性质、作物营养胁迫的对应关系很不明确,不能满足实际应用的需要。随着高分辨率遥感卫星服务的提供(1~3m),加强遥感光谱信息与土壤性质、作物营养关系的研究和应用将是近几年精确施肥研究的热点和重点。 DGPS的定位精度已完全能满足精确施肥的技术需要,虽DGPS导航自动化施肥或耕作机械已有研究,但DGPS与GIS数据库结合进行自动化机械施肥还有待于进一步发展,同时GPS-RS-GIS也正趋向于一提化。 作物模型和专家系统方面,除进一步加强作物营养机理和生理机理研究外,模型的适用性和通用性方面应于精确施肥紧密结合,因为现在许多模型需要的变量过多或普通方法难以测定,即模型需要进一步简单化和智能化。
5.中国发展精确施肥的思考
精确施肥在中国的必要性。我国的化肥投入突出问题是结构不合理,利用率低。化肥投入尤其是磷肥的投入普遍偏高,造成养分投入比例失调,增加了肥料的投入成本。[20]我国肥料平均利用率较发达国家低10%以上,氮肥为30-35%,磷肥为10-25%,钾肥为40-50%。肥料利用率低不仅使生产成本偏高,而且是环境污染特别是水体富营养化的直接原因之一,众所周知的太湖、滇池的富营养化,其中来自肥料面源污染负荷高达1/3-1/2。随着人们环境意识的加强和农产品由数量型向质量型的转变,精确施肥将是提高土壤环境质量,减少水和土壤污染,提高作物产量和质量的有效途径。
现代化智能灌溉技术推广困难与发展方向论文
在学习、工作中,大家都接触过论文吧,通过论文写作可以培养我们独立思考和创新的能力。那么,怎么去写论文呢?以下是我为大家整理的现代化智能灌溉技术推广困难与发展方向论文,仅供参考,大家一起来看看吧。
摘要: 本文阐述了农业灌溉技术的现状和发展方向,对物联网、无线传感器、大数据以及智能感知等人工智能技术与灌溉技术相结合,实现农业灌溉的智能化、规模化管理,以及农业生产的灌溉环节面临的困难和挑战做出了深入的分析,对农业生产的智能化有一定的参考意义。
关键词: 智能灌溉;传感器;无线;物联网;大数据;
农业是社会生产和生活的基础。随着科技的发展,各项技术不断应用到农业生产中,“智慧农业”以智能感知、物联网、大数据和机器学习为依托,逐渐成为现代农业建设的主方向。
水资源的储备和利用技术与现代农业的发展休戚相关,水资源的不合理利用,甚至浪费,成为农业现代化发展的瓶颈。另外,水资源的地域分布不均和季节分布不均,干旱缺水与水资源短缺已成为制约现代农业可持续发展的重要因素。一方面是水资源严重不足,一方面是不科学的灌溉方式,这不仅造成了水资源的浪费,更加剧了水资源的短缺。另一方面,气候变化及其影响也是现代化智能灌溉要面临的挑战。气候变化会导致水质的下降,水和土壤盐分的增加,进而加大灌溉需求,最终导致农业生产成本的提高。
农业智能化灌溉技术通过基于无线传感器技术的物联网技术、云计算技术、大数据技术以及人工智能技术等,集智能感知、智能预报、智能决策、智能分析为一体,为农业生产灌溉提供智能预测与决策方案,达到精确化灌溉的目的,是高品质农作物产品生产的重要一环。
因此,发展农业智能化灌溉技术,实施旨在改善水资源管理的技术创新,实现水资源的合理利用,同时,能够实施水肥一体的灌溉技术的革新,在大幅减少灌溉水用量的同时,能够降低农作物生产成本,提高作物的产量和质量,是目前我国农作物生产的一个战略目标。
1、我国农业灌溉技术的现状
灌溉行业发展迅速,在欧美发达国家已经有了成熟的应用。以滴灌、喷灌为主的水肥一体化灌溉模式在国外已经非常普及,但国内,农业生产企业总体上对于水肥一体化的认知程度还是不够。
我国大部分地区,特别是北部地区,由于干旱气候决定的资源性缺水比较严重,而中部地区则同时面临着严重的水质性缺水和资源性缺水。即使是南方地区,也存在季节性缺水的情况,给农业生产发展带来了阻碍。同时,气候环境、温室效应等因素也使得水资源的供需矛盾日渐显现,在一定程度限制了这些地区的经济发展和繁荣。
目前,农业生产灌溉技术主要采取滴灌、喷灌、微灌等节水灌溉措施,虽然相对于大水漫灌而言,已经实现了较高的效率,但从综合效果看,还无法根据农作物的生产环节进行按需灌溉,精细化程度远未满足当下生产的需要。公开资料显示,生产一公斤粮食耗水量高达800公斤,相对于先进国家,生产一公斤粮食耗水量约为500公斤,差距还是很明显。
传感器的兴起使农业生产更加精准和安全,比如,现在许多灌溉公司正在开发跟气候环境、土壤环境相关的传感器技术,通过物联网技术,来实现对农业灌溉的精细化管理和控制,但目前,特别是国内,对这些技术的应用,还处于探索初级阶段。
为了全面实现我国农业高效灌溉系统的建设,必须要大力推广基于物联网结合无线传感器技术的农业灌溉应用,建立基于物联网和传感器等新技术基础上的节水灌溉体系。
2、实施基于无线传感器的智能化物联网灌溉技术的意义
2.1实施基于无线传感器的智能化物联网灌溉技术,为实现我国从传统农业向现代化、集约化、规模化农业发展提供了一个强有力的.技术支持,是解决我国农业灌溉作业中水资源短缺问题的最佳途径。
2.2农业生产中,灌溉环节是最为重要、也是人力成本花费较高的环节。智能化物联网灌溉技术的应用,不仅能够节约灌溉用水,还能够最大化降低人力成本。
2.3实施基于无线传感器的智能化物联网灌溉技术,能够对植物生长的各个环节进行精细化的监控,提高作物产量;另外,结合水肥一体灌溉技术的应用,还有利于提高和改善农作物的品质和产量,达到增产增收的效果。
2.4实施基于无线传感器的智能化物联网灌溉技术,能够实现灌溉的自动控制、远程控制,减少人为操作的盲目性与随意性,提升农业灌溉的综合管理水平,改变原先粗放式的灌溉模式,全面提高农业生产的效率,为规模化、集约化农业生产奠定基础,有效地缓解我国灌溉水资源紧缺的问题。
综上所述,基于无线传感器的智能化物联网灌溉技术,必然成为今后农业智能化灌溉发展的趋势。
3、现代化智能灌溉技术推广的困难
3.1商业型智能灌溉设备系统成本高昂,中小农业商户承担不起费用,无法使用智能灌溉系统,比如:典型商业传感器非常昂贵,因此提供可连接到节点的低成本传感器用于灌溉管理和农业监控系统,成为推广智能灌溉的一个挑战。
3.2不同土壤类型和土地所需的灌溉水量不同,如果没有因地制宜地实施灌溉方案,使用过多或过少的水量都有可能造成产量损失或质量达不到要求。在过多灌溉的情况下,径流会导致营养物的流失以及水资源的浪费;水量过少,无法满足农作物生长需求。使用智能灌溉调度系统可以帮助用户确定最佳的灌溉方案,有效提高生产力并减少这些不利的环境影响,也是农业灌溉智能化地必要途径,由于前期需要高投入,农民地积极性很难被调动,致使新技术的实施进展缓慢。
3.3基于物联网和无线传感器的智能灌溉技术,涵盖了农业科学,电子科学,计算机信息科学,环境科学等多学科技术,比如,不同类别的的作物对土壤环境和温湿度环境的要求是不同的、地下根部分和地上茎叶部分对水分要求也不同,有的作物的价值在根部,有的作物价值在叶部,因此,就需要灌溉系统根据不同的要求采用不同的灌溉方式。因此,智能化灌溉技术的实施,有比较高的挑战。
4、现代化智能灌溉技术的发展方向
基于物联网和无线传感器等智能感知技术的现代智能灌溉技术,利用无线传感器技术,采集土壤的温度、湿度、酸碱度以及土壤的水分含量、二氧化碳浓度等土壤墒情信息,结合气候环境传感器采集的温湿度、光照强度等环境信息,实时监测周围环境的变化,甚至能够监测到作物表面的水分等作物生理信息,并通过物联网无线通讯网络,将采集的原始信息传送到云端数据中心进行处理、存储,实现信息互通与共享。再通过大数据技术对这些信息进行综合对比分析,根据分析结果对灌溉实行智能化的判断,制定出最适宜作物生长的灌溉方案,根据需要实时、自动驱动相应的灌溉设备,对农作物实施智能化、精细化的灌溉,灌溉阶段完成后,作物生长监控系统可以对灌溉结果进行对比分析,提供更合理的灌溉调整方案,形成闭环,最大化减少人工干预,使得各功能模块达到互相协作的目的,有效帮助农业生产者计划和管理灌溉的时间、灌溉的频率和用水量,将作物生长需要的水分和土肥环境调整到最优状态,减少水的浪费,节约生产成本,并最大程度地减少过量灌溉,从而确保灌溉的准确性与高效性。另外,通过土壤传感器对土壤成分的分析,进行灌溉系统施肥操作,实现水肥一体的灌溉作业,是现代化智能灌溉技术的发展方向之一。
随着农业物联网平台的建设的不断推进,结合气候预报信息和相关传感器收集的气候信息,对可能发生的气候灾害采取预防性措施,例如:针对干旱气候,可以提前布局,储蓄水量,以备干旱来临,有充足用水,实施预防性灌溉,提高农作物抵抗灾害的能力。
综上所述,构建一个多功能,高效率、低能耗的基于智能灌溉技术的节水灌溉平台具有十分重要的意义,也是未来物联网智能化灌溉发展的必然趋势。总之,随着科技的发展,新的技术不断出现,智能灌溉技术融合到农业生产的整个过程,形成完整的闭环系统,不断提升农业生产管理水平,是现代化智能灌溉技术发展总的方向。
5、结论
物联网结合无线传感器技术作为新一代信息化技术的高度集成与综合性应用,已经成为了当今科技发展的战略发展方向之一。我国农业生产规模的不断扩大和农业发展的需要,水资源管理至关重要。物联网与农业的相结合,为农业信息化技术与农业产业的发展,提供了新的机遇和挑战,同时农业生产也为互联网技术提供了一个广阔的应用平台,尤其是智能灌溉技术的应用,可以直接有效地解决当前农业发展中遇到的问题,为农业的现代化进程提供强劲的动力,实现高效的精准化灌溉,全面提高农业生产效率。
建设我国农业高效智能化灌溉体系,必须要大力推广基于物联网结合无线传感器技术的农业灌溉应用,以提高农业生产效率和水资源的利用率,保证粮食生产和消费用水的充足和节约。
6、参考文献
[1]赵庆建,王昌海,丁胜,等.农业智能灌溉系统关键技术研发[J].江苏科技信息,2018(2):59-61.
[2]杨彦鑫,阮解琼,黄兆波,等.基于ZigBee的智能农业灌溉系统研究[J].农业与技术,2017(4):66.
[3]徐一,江昊.智能节水灌溉技术在主要农作物全程机械化中的应用[J].南方农机,2019(4):72.
[4]王健.现代农业智能灌溉技术的研究现状与展望[J].广东蚕业,2019(4):26-27.
;