日本是一个水资源相当丰富的岛国。尽管如此,日本人仍然居安思危,千方百计地节约用水,以“构筑可持续发展的用水社会”。
根据不同用途,日本的水资源有生活用水、工业用水、农业用水之分。
生活用水包括家庭和城市活动用水,如饮用、烹饪、洗刷、洗澡、清洁和厕所等用水,用水量每年约为164亿立方米。在这方面,最重要的节水技术就是建立“中水道”系统,即城市废水的处理和再利用系统。这种系统可把各种生活用废水集中起来,加以净化处理,用作冲洗厕所等杂用水。到1997年3月底,全国共有 “中水道”设备2100套,每天供应杂用水32.4万立方米,相当于全国生活用水量的0.8%。废水净化处理技术一般采用生物处理法。其中最简便的方法是石井勋教授发明的“石井方式”,即把使用过的乳酸饮料瓶作为曝气池的填充材料,采用中心导流曝气方式,构成生活用水净化系统,无须任何药物,30个小时后,微生物就能把污水变成清流。
日本官方的资料说,仅及时更换老化输水管道一项措施,就在10年间把自来水的利用率提高了10%。这说明防止水管漏水是节约用水最基本也是最有效的手段。
在日本,无论是家庭内,还是大街上,都看不见厨房或者厕所里有“常流水”现象。 马桶、水槽、管道、水龙头都制造得精致、美观、耐用。高质量产品的制造技术对节约用水发挥了不可忽视的作用。
在应用电子技术节约用水方面,日本也走在世界前列。在饭店、商业大厦、大小公园及各种车站等公共场所,厕所冲洗和洗手池都在实行给水自动化,有人用则开,无人用则关,真可以说一滴水也舍不得浪费。
日本的工业用水自成体系,是通过专用管道供给的。到任何一家工厂去,无论是气管、油管,还是水管,都没有“滴、漏、跑、冒”现象。这在日本是企业经营管理应该达到的最低水平。多年来,全国工业用水量基本上稳定在每年544亿立方米的水平,在很大程度上归功于对工业废水的净化处理和再利用。目前,工业废水的回收利用率为77.9%,比20世纪60年代提高一倍以上。废水处理采用物化处理法、生物净化法和热处理法等多种技术手段。各种行业的废水处理设备安装率平均为74.7%,化工、钢铁、造纸、食品加工等用水大户则达到80%以上。钢铁工业界则采用“阶梯式循环用水法”,即首先向最需要高质量水的单位供应新水,然后把经过处理的再生水依次供应给其它对水质有不同要求的单位,对节约水资源起到了很好的作用。
日本用水量最大的还是农业,以取水量计算,每年为589亿立方米,占全国用水总量的2/3。农业用水主要取自河流,地下水仅仅有60亿立方米。出于保护生态环境的考虑,日本对地下水的使用采取严格限制政策。因此,近20年来,农业地下水的使用量在逐年下降。二战后,日本在农业用水方面也不断采用新技术和新方法,以节约水资源。例如,结合大规模兴修水利和农田基本建设,改变传统做法,把水渠分为灌溉渠和排水沟;积极利用和发挥原有6.5万个池塘的蓄洪防灾、积蓄雨水和供水抗旱等多种功能;在农田灌溉方面,铺设管道代替明渠,以防止渗水、漏水,推广喷灌减少漫灌,重复使用灌溉用水等;随着生活水平的提高,半数农村兴建了废水处理设施,把经过净化处理的废水用来灌溉农田。
我国一直也在大力提倡节约用水,但是浪费水的现象仍是频频出现。一方面是人的思想问题,还没有从概念上时时处处想着节约用水;另一方面就是技术问题,产品质量问题,像以前我们用的铸铁水龙头,用的时间稍一长,就会出现滴、漏现象,不过好在是已经开始换了(只知道在北京,不知道别的地方是不是还在用)。日本在技术方面一直位于世界领先地位,多借鉴一些他们的经验,可以使我们少走一些弯路,使节水的步伐更快一些,因为水资源毕竟是有限的。
冬春是流感的高发季节。在我国,流感流行期一般从每年12月开始,一直持续到来年的3-5月份。在南方地区夏季也会发生流行,流感是高传染性疾病,掌握预防流感的方法很重要。保持手的整洁可以有效预防疾病。
正确洗手的方法,有以下几步:
第一步:掌心相对,手指并拢相互摩擦;第二步:手心对手背沿指缝相互搓擦,交换进行;第三步:掌心相对,双手交叉沿指缝相互摩擦;第四步:一手握另一手大拇指旋转搓擦,交换进行;第五步:弯曲各手指关节,在另一手掌心旋转搓擦,交换进行;第六步:搓洗手腕,交换进行。
掌握正确的洗手方法的同时,提示大家节约用水,避免常流水,洗手时将水打开用盆接住,洗过手之后可以二次利用水源。
部分国家水资源循环利用及其效果
国外先进的节水措施
(一)美国节水措施
在美国的水资源的开发利用中采取的主要措施包括:减少水源消耗和流失,进行合理用水、节约用水。包括:保护水源,防止水土流失;水源重复利用,侧重于对城市污水进行处理,再作为灌溉水源;调节河川径流;选育抗旱品种;引水补给地下水;减少蒸发,应用植物生长调节剂;调整作物种类和市场供应等。当前,美国发展节水灌溉农业主要采用先进的节水灌溉技术和农业技术相结合,以取代传统的单一的地面灌溉技术,农田灌溉水的利用效率已达70—80%。
(1)美国图森市的节水措施
图森市位于亚利桑那州的中南部,夏季炎热,气温常超过37.8摄氏度。该市的高峰用水是由夏季的高温期决定的。该市年平均降水量为245毫米,其中约有一半发生在夏季,而年平均蒸发量却高达1524—1778毫米。
在图森市水厂的许多门类的用水户中,有些用水户从性质上讲属于季节性用水:冬季用水很少,用水量也较稳定;夏季用水量较大,且随气温和降雨情况而达到高峰。1974年夏季,图森市经历了历史上最炎热的旱季,市内水井已无法满足高峰用水的要求,供水系统在局部地段停水,送水压力下降。为了正常送水,图森市削减了高峰用水量,使用水量不受季节的影响。推行这项计划后各类用水户逐步调整了他们的室外用水方式,每人每天的总用水量已由1974年的776.5升下降到目前的约549.2升。
(2)美国加州居民的雨水收集系统
1975—1977年,美国加州发生了干旱,迫切地需要探求适当的供水方案。一般说来,在农村居民用水的最可行办法是从屋顶收集雨水,使其汇集存储到一些容器内,而后提供使用。雨水的收集,完全可以满足低限度的家庭用水需要。
(二)以色列节水灌溉措施
以色列地处干旱半干旱的沙漠地带,北部降雨量为700—800mm,中部为400—600 mm,南部仅有25 mm。为克服降水不足问题,以色列大力开发灌溉地。目前43.7万hm2耕地中,19.3万hm2(约占总耕地面积的44.2%)为水浇地,每年农业灌溉用水达11.8亿m3,其中有9亿m3为可饮用水。农业灌溉方法是压力灌溉,主要是滴灌和喷灌,水的利用率分别可达95%和80%,而且全部采用电脑管理,利用水分感应器自动调节灌溉,包括灌溉时间、次数、间隔、灌溉量等。根据以色列水法,国家境内所有水均为国有,由水委员会统一管理,包括制定政策、确定水使用配额和制定水资源的开发计划等。为了鼓励农民节约用水,一方面要求农民交付水费,另一方面规定在配额范围内后一半配额的水价高于前一半。目前灌溉业的主要研究方向是:开发非饮用水资源,如废水、洪水、盐碱水等,保证不断增加农业用水。
在90年代初期,喷灌和滴灌技术已分别应用于全国种植面积的25%和75%。农田和草坪一般使用喷漠和滴灌,且高度自动化,全部由电脑控制,每台中心电脑控制周围几十甚至几百公顷的土地。滴灌技术已广泛应用到全国各地。喷灌和滴灌的应用极大地提高了水资源的利用率,使每公顷土地的灌溉用水量减少了1/3。而且,全国70%的污水经过处理用于农业灌溉。
( 三) 澳大利亚节水措施
澳大利亚有70%的地区雨量在500毫米以下,易发生旱灾。全国地面水源不多,平均年径流量仅有3454亿立方米。虽然地下水丰富,但60%是自流井区,可利用的水源只有176万平方公里。澳大利亚不断采用新的节水灌溉方法。把12厘米的滴水管埋入地下,把水和肥料溶液直接滴灌在西红柿等作物的根部,不但节省大量水肥,而且可收获90%的优质蔬菜,而传统的灌溉方法只能收获到60%—70%,这种灌溉方法使多余的肥料不致污染水渠。又如在果园中,春季落叶对果树不浇水或少浇水,抑制果树生长,进入夏季则多灌水以促进水果的生长。这种方法使果树长得矮小,不需过多浇水和修剪,但水果产量却增加了。试验表明,可节省用水20%,增产水果20%。多数果园已采用了这项措施。
(四)前苏联节约用水的措施
前苏联各加盟共和国单位土地面积上的水量和人均水源量的分配极不均衡,数字差距多达数十倍。前苏联有11万亿立方米的大气降水,其中约有40%被转化为河川径流。但地区分布极不均衡,在占耕地面积90%和占工业产值80%的一些发达地区只有全前苏联水资源的24%,而其中一些对水资源有特大需求的南部地区却只拥有约16%的可用水资源。除了以上这些不足外,前苏联河川的重要特征是时间上的分配也不平衡。为了解决这些不足,只有通过大型引水调水渠道实现从其它流域调水和修建许多季节性调节水库来解决严重的缺水问题。
为了水资源的合理利用,前苏联制定了一系列节水措施:(1)对城市污水作三级处理而后加以利用;(2)将地表径流处理后使用(3)研究利用工矿企业的排水;(4)抽用矿坑水和工矿区地层水;(5)沿海地区开发利用海水;(6)有些设备采用空气冷却,不使用水冷;(7)加大发电单机容量;(8)加强水管理和处理工作;(9)采取累进水费制等。
(五)印度节水与合理用水措施
在印度的许多地区,地表水比地下水丰沛,但很多渠道中地表水的供应常常是不稳定的,有时甚至严重不足,所以地下水补充地表水显得越来越必要。地下水补充渠道水增加了渠水的供应量,在渠道水供应低峰期或在进行年度维修渠道关闭期间,地下水可直接用于灌溉。在许多地区,潜在的地下水可以有效地与地表水结合进行集约灌溉。
由于降水时间过于集中,为控制雨水流失,印度采取利用农田集水区的水塘拦蓄地面径流,使干旱地保存雨水,以便在旱季时进行补充性灌溉。这种作法可节省灌溉用水,并可对旱季时灌溉用水不足给予补充,以保证作物的正常生长和稳产、高产。
在灌溉技术方面,印度为提高水资源利用率,防止土壤盐渍化,要求根据地区水位深度确定灌溉方式。由于水资源季节性供应不平衡,研究部门提出在雨季到来之前,在各河流附近抽取大量地下水进行灌溉的方案,以达到降低地下水位,使雨季洪水能更多渗入地下之目的。这就要求在旱季到来之前,采用定量供水,循环灌溉等方式,力求节约水资源。
4.3.1 美国水资源循环利用及其效果
4.3.1.1 美国的废水再生与回用
美国城市废水的再生与回用起步较早。目前全美回用城市废水量达9.37×108m3/d,包括①回用灌溉5.81×108m3/d(占62%),其中农业灌溉2.75×108m3/d,景观灌溉0.46×108m3/d,其他为2.6×108m3/d;②工业回用2.86×108m3/d(占31.6%),其中工艺用水0.91×108m3/d,冷却水回用1.96×108m3/d,锅炉补给水0.09×108m3/d;③回灌地下水0.47×108m3/d;④其他回用(娱乐、养鱼、野生动物栖息地等)0.13×108m3/d。
全美有再生水回用点536个,其中加州有238个。下面介绍美国废水再生与回用的几个实例。
①加利福尼亚州橘子县21世纪水厂再生水回灌地下。橘子县由于超量开采地下水,造成地下水位低于海平面,促使海水不断流向内陆,致使地下淡水退化不宜饮用。为防止地下水位下降造成海水入侵,橘子县早在1965年就开始研究将三级处理出水回灌地下,以阻止海水入侵。橘子县为此兴建了“21世纪水厂”,该厂设计能力为5678m3/d。原水为城市污水二级处理出水,进一步经沉淀、过滤和活性碳处理后回灌地下水。由于回灌地下总溶解性固体的限制为500mg/L,因此一部分再生水在回灌地下水之前还采用反渗透法进行了脱盐。21世纪水厂的净化水通过23座多点注入管井分别注入四个蓄水层,与深层蓄水层井水以2∶1的比例混合以阻止海水的入侵。该项工程表明:人工控制海水入侵是可行的;城市废水经深度处理后能够达到饮用水水质标准;工程经长期运行证明稳定、可靠。
②佛罗里达州圣彼得堡的废水再生与回用。圣彼得堡是城市废水回用的先驱之一。1978年实施了双配水系统,供给用户两种质量的水(饮用水和非饮用水),再生水开始用于非饮用目的的使用。1991年该市向7000多户家庭及办公楼提供再生水8×104m3/d,并用作公园、操场、高尔夫球场灌溉用水以及空调系统冷却水和消防用水。该市共有四座废水处理厂,总处理能力达270×103m3/d;采用活性污泥生物处理工艺,并附加有铝盐混凝、过滤及消毒处理,双管输水系统管道共长420km。通过10口深井将多余的再生水注入盐水蓄水层,一年间平均约有60%的再生水注入深井。由于使用再生水,节约了优质水,因此尽管该市人口增加了10%,但饮用水仍能满足供应。
③亚利桑那州派洛浮弟核电站回用再生水作冷却水。派洛浮弟核电站是美国最大的核电站。第三期三个反应堆分别于1982、1984及1986年投产,每个发电能力为1270MW。此外拟再建二个反应堆。核电站地处沙漠,严重干旱,因此采用再生水作为冷却水。再生水来自二座城市废水处理的二级生物处理出水,输至核电站再经补充处理,使之达到所需水质。该核电站采用冷却水系统,补给水约200×104m3/d。
4.3.1.2 美国水资源循环利用效果
近50年,美国的用水反映了一个完成了工业化任务进入后工业化的国家在不同时期的用水变化过程(如图4.1)。美国国民经济总用水量1950年仅为2500亿m3左右,其中农业为第一用水大户。此后,用水量随着美国经济的发展持续增长,到1980年达到峰值,为6100亿m3左右。1980年后,用水量明显回落,并基本稳定在5500亿m3左右。至2000年,工业用水减少,用水总量回落至4800亿m3左右。
图4.1 1950~2000年美国用水量变化图
1950~1980年的30年是美国国家经济用水的快速增长期,其间美国经济高速发展,以冶金、化工为主导的重工业发展迅速,工业用水随着这些高耗水产业的发展快速增长,由1950年的1063亿m3增长到1980年的3500亿m3;农业用水虽然也在快速增长,但增长幅度小于工业,工业成为第一用水大户。1980年后,以电子产业为主的新兴工业和服务业成为拉动经济增长的主导产业,服务业在国内生产总值中的比重不断上升,同时技术进步使得用水效率大幅提高,工业、农业用水量不断下降,使得总用水量进入基本稳定并略有下降的时期。尽管生活用水有所变动,但因所占比例较小,对需水变化的总体影响不大。
4.3.2 日本水资源循环利用及其效果
4.3.2.1 日本的废水再生与回用
近20多年来日本在废水再生和利用方面进行了大量研究开发和工程建设。1986年城市废水回用量达6300×104m3/d,占全部城市废水处理量的0.8%。再生水主要回用于中水道、工业用水、农田灌溉、河道补给水等。各种用途及其所占的比例为:中水道系统为40%、工业用水29%、农业用水15%、景观与除雪16%。中水道系统是日本污水回用的典型代表。1988年日本共建有中水道844套,其中办公楼、学校为大户。学校占18.1%、办公楼占17.3%、公共楼房占9.2%、工厂占8.4%。中水道再生水主要用于冲洗厕所(占37%)、冲洗马路(占16%)、浇灌城市绿地(占15%)、冷却水(占9%)、冲洗汽车(占7%)、其他(景观、消防等)为16%。
4.3.2.2 日本水资源循环利用效果
根据日本通商产业省和国土厅的统计调查资料,1965年以来,日本工业与生活用水增长较为迅速,其中工业用水量在1965~1975年的10年间增长了1.5倍,生活用水量增长1.3倍,是日本用水增长最快的时期,随着工业化和城镇化进程的加快,日本依靠节水来抑制需求的快速增长。日本工业用水的重复利用率1965年为36%,1975年上升至67%,2000年达到78%。城镇供水系统通过及时更换老化的自来水管道防止管道漏水,提高节水器具普及率,并积极鼓励使用中水、雨水等非传统水源。农业方面,鼓励兴建废水处理设施,用经过净化处理的废水灌溉农田,改变传统灌溉方式,推广节水灌溉技术。自20世纪70年代以来,日本用水量基本稳定在900亿m3左右(如图4.2)农业用水趋于稳定,工业用水缓慢降低,生活用水稳定增长。日本由于资源贫乏,用水量较大的能源、原材料工业在国民经济中所占比重较小,科技含量高的加工制造业发达,工业用水并未像美国那样由于产业结构的调整呈现大起大落的现象。
图4.2 1950~2000年日本用水量变化图
4.3.3 其他国家水资源循环利用及其效果
世界上第一座将城市废水再生水直接用作饮用水源的回收厂设在纳米比亚的首都温德和克市。该回收厂于1968年投产,第一阶段产水量为2300m3/d,正常处理能力可达4500m3/d,以后增至6200m3/d。原水为城市废水厂二级生物处理出水,处理流程如图4.3。
图4.3 城市废水厂二级生物处理流程
深度处理水的水质经严格的水质监测,证明符合世界卫生组织(WHO)及美国环保局发布的标准。
以色列属于半干旱国家,再生水已成为该国的重要水资源之一。100%的生活废水和72%的城市废水已经回用。据1987年资料,全国废水2.5×108m3,处理量达2.18×108m3,处理率接近90%。再生水用作灌溉达1.046×108m3(占42%),回灌地下为0.7×108m3(占29%左右),排海水量0.7×108m3(占29%左右).废水处理后贮存于废水库。全国共修建127座废水库,其中地面废水库123座,地下废水库4座。废水进行农业灌溉之前一般通过稳定塘系统处理。有些城市将城市二级生物处理出水,再经物化处理后回用于工业冷却水。此外,废水经深度处理后回灌地下水,再抽出至管网系统,或并入国家水资源调配系统,输送至南部地区,或用于一般供水系统,最南部地区甚至将它作为饮用水源。由于采取了上述废水回用的措施,以色列大大提高了水资源的有效利用,从而缓和了水资源短缺对社会经济发展的制约作用。
科威特利用经三级处理后的城市废水进行农业灌溉。印度截至1985年,至少有200家农场利用城市废水进行灌溉,面积达23000hm2。沙特阿拉伯1975年利用再生水量90000m3/d,2000年计划用水量为190×104m3/d,将有10%取自经二级处理乃至三级处理后的城市废水再生水。