水利对于印度是极其重要的,不仅关系到赖以生存的农业,而且对于社会稳定,减少贫困,保持环境和经济的可持续发展都至关重要。印度的人口占世界1/6,淡水资源占世界1/25,土地面积占世界1/40,同时还养活着世界上1/20的牲畜,其中一半以上是牛。印度的淡水资源分布极不均衡,恒河--布拉马普特拉河--梅克纳河流域占印度土地面积的33%,但占有全国水资源的60%;西海岸占地面积只有全国的3%,但占了全国水资源的11%,其余64%的土地只有29%的水资源。
印度的淡水来源主要是降雨,加上北部喜马拉雅地区有限的雪水。印度全国降雨的特点是在时间和空间上极不平衡。西部拉贾斯坦邦年降雨量只有约310毫米,东部梅加拉亚邦则超过11400毫米,全国平均年降雨量为1170毫米。全年降雨量中约85%都集中在4-5个月的时间内。全国3.29亿公顷的土地面积接受到的年降水量为4000立方千米。每年平均流淌在河流里的水量估计为1869立方千米,其中只有690立方千米的地表水可通过现有技术带来效益。可再生的地下水资源总量估计约为431.8立方千米。由此,印度每年可再生利用的水资源为1122立方千米。
印度水利的形势是严峻的:全国12%的土地,即4000万公顷的面积属于洪水多发地区;16%的土地,即5100万公顷的面积属于干旱地区。在人口迅速增长的形势下,人均可获得水量从1951年的5177立方米/年下降至2007年的1654立方米/年,预计到2025年会进一步降到1341立方米/年,而普遍认可的人均最低用水量是1700立方米/年。印度最极端的情况是2000年萨巴尔马蒂盆地人均只有308立方米/年。
印度水利部的一个专门委员会对全国各门类用水需求做了预期估算,情况如下表:(单位:立方千米)
2010年
2025年
2050年
灌溉用水
688
910
1072
饮用用水
56
73
102
工业用水
12
23
63
能源用水
5
15
130
其他用水
52
72
80
合计
813
1093
1447
把印度水资源的家底与将来的需求对照一下,估计到2050年,印度30%的土地面积和16%的人口将出现水资源缺口。
印度需要加强水利基础设施建设。印度气候条件的特点是在时间和空间上分布不均的急速降水。在短短15天内就能降下全年50%的雨量,河流中90%的水量在不到4个月的时间就流走,即六月至九月。自古以来,人们为了适应这种急剧变化,要么靠近河岸居住,要么想方设法对水进行精打细算的管理。印度过去的150年间在大型水利基础设施建设上做了巨大投资,出现了惊人的经济变化,曾经的干旱地区变成为经济增长的中心,历史上有水的地区增长速度反而比较慢。灌溉区的贫困发生率大约是未灌溉地区的三分之一。印度人在特有的气候条件下发展出了河岸文明的模式,直到19世纪,他们在很大程度上依赖于用蓄水池和地下小水窖来储存剩余的水,这只是在当地能够想出来的办法。
在印度可利用的1122立方千米水资源中,690立方千米是地表水,432立方千米是地下水。对地表水的利用只有建立了相应的蓄水设施后才能实现。印度在修建了大大小小4525座水坝之后,人均蓄水才达到213立方米,许多其他国家则要多得多,如俄罗斯为6103立方米,澳大利亚为4733立方米,美国为1964立方米,中国为1111立方米。另外,印度只能存储30天的雨水,而发达国家干旱地区主要江河流域能储存900天的雨水。由于全球气候变化,喜马拉雅山西部冰川迅速融化,次大陆大部分地区降水变率增大等原因,对于蓄水的需求将会增加。蓄水可以对增加的变数有所帮助。蓄水于江河、湖泊、土壤和地下蓄水层中是任何应变战略的关键一环,不论是对付旱灾还是涝灾。水坝的设计需要有内含的灵活性,在流域范围内既可以应对水多的时候,又可以应对水少的时候。其他的选项包括小规模的雨水储存,通常被称为收集雨水。收集雨水是一种古老的做法,但有效,特别是在干旱地区。
地下水一直是保证水源供应的基础。印度的淡水供应在很大程度上依赖于地下水,例如80-90%的农村地区生活用水靠地下水。人们打了2000万口管井抽取地下水,用来灌溉的面积超过50%,占了全国农业生产总量的三分之二,在耗电量方面也占了近30%。在农业邦地下水和电力消耗都比较高。地下水的使用量达到每年估计补充水量的70%至超过100%。在这些地方,地下蓄水层以每年0.2至0.5米的速度在减少。城市里的穷人在很大程度上依靠供水商,他们大部分供应的是地下水,要价很高。工业部门在很大程度上也用地下水来进行自我供应。
过度开采地下水导致水里的有毒元素越来越多,如氟,砷和盐分,已经有2500万人因氟中毒致残。已有17个邦200个县发现地下水被氟污染。世界卫生组织估计印度20个邦的7000万人有过量吸收氟的危险,另外有1000万人承受着地下水中含有过量砷的危险。
通过收集雨水,修建水坝,流域管理,修复故有水体,建设新的水利系统等,水利发展的潜力还很大。大量修建小池塘小水窖来收集雨水可以增加水的供应量。中央政府地下水委员会的总体规划是动用2450亿卢比的经费给地下水补充36立方千米的雨水。但是目前还没有认真落实这项规划的行动。许多城市制定了新建建筑物必须安装回收雨水设施的规定,而农村地区还没有类似的办法。
地下水的可持续是一个核心问题。根据观察,对有水患平原浅层地下水的过度开发造成季风期河水返回到地层下的空间增大。疏导性地补充水源是一种有效的管理方式,可以弥补供需之间的差距。许多专家提出建议,通过跨河流连接的方式对冗余水量进行调配是个好办法,特别是在季风季节把水量过多河流里的水调到水少的地方去。估计可用于这种调配的水量有220立方千米。印度每年有747立方千米的水白白流到大海里去了,通过实施约30个跨河流连接项目把某个地方过多的水输送到某个缺水的地方去,应该是意义重大的。
农业是用水的第一大户。在使用的水中有2/3用在种粮食上了。一个人每天喝水2-4升,但所吃的粮食需要2000-5000升水才能种出来。随着人口的增加,印度的粮食生产从现在的3.8亿吨,到2050年时也许要增长到4.2亿吨。要实现这个目标,就需要加大灌溉农田的用水量,这会带来进一步的水源枯竭,水质下降,环境恶化,进而又影响到粮食安全。
印度进行的绿色革命使粮食产量成倍增加,取得了成功,但现在认识到同时对环境也造成了伤害,包括过度使用化肥、杀虫剂和水。
提高农业生产力是一个基本的解决方案。通过提高农业用水效率有助于缩小水的缺口。扩大“滴水浇灌”的应用是一项积极的措施,可使水的净用量获得更多的产出。提高农作生产力的整套措施除其他外,还包括免耕种植,改善排水,开发良种,优化用肥,加强管理,改进方法,农作技术的创新等。比如开发出耐寒品种,在冬季种庄稼需要的水就少。在温室或遮荫大棚里种庄稼可以减少大田种地的水分蒸发,尽管这会增加成本。
在农业生产中有些低技术方法也会有帮助,如改进淡化海水的方法和低成本滴灌,以及成本低但较实惠的水投资项目。在印度不同形式的滴灌系统已经流行较长时间了,如东北部的竹竿滴灌,奥里萨邦等地的大陶罐和多孔盆等。约50年前引进的压力喷头灌溉对农业现代化贡献良多,提高了水的利用效率。滴灌可节水25%-60%,还可增产60%。滴灌非常适合于园艺作物。喷头灌溉适用于地势起伏的农田,可节水25%-33%。目前在印度6900万公顷灌溉面积中,采用滴灌的只有50万公顷,喷灌的只有70万公顷。
节约用水的措施应该推广使用。有些措施并不需要复杂的技术,如以信息技术为基础的流量表可以监测出实际抽取了多少地下水,这对地下水紧张地区的工业用水大户能起到监督作用。产业界使用弹簧阀门、感应器等设备可以减少用水量,带来经济回报。“十一五计划”中提出的一项战略就是水的循环利用和二次使用,这主要是指非饮用水。在控制洪水方面,增加流域体系的蓄洪能力是一种理想的解决方案。
城市缺水一直是让印度头疼的一个问题。不论是大城市还是小城镇,印度没有一个城市能够做到全天全时供水。大小城市平均下来每天供水时间仅2.9小时。城市水的成本回收效益太差仍然是一个难题。大多数的供水和卫生工作不会产生足够的收入来偿付其运行和维护费用。从自来水供应服务中只能赚回46%的运行和维护成本。在首都德里,对水进行加工处理和供应的成本是每立方米9-10卢比,而市民交的水费是每立方米0.35卢比,还不到成本的4%。实际上主要的费用还不是提供清洁水,而是从排污系统中收回用过的污水并进行处理后排放到环境中。污水处理才是真正难做的事情。印度对产生的污水进行处理的量还不到7%,每天有约7000万升的工业废水未经处理就直接排进了当地的河流湖泊。
印度在独立之前,灌溉部门是能够为政府赚取净收入的,现在政府甚至不得不为维持这一基础设施而开支。水利部门在财政上缺乏可持续性的主要因素有(1)糟糕的财务管理和会计核算制度;(2)不适当的关税水平和扭曲的收费结构;(3)较高的资金和运行维护费用;(4)冗员;(5)无收入水的数量很大。印度特大城市里的水利人员配置远远高于国际上做得最好的城市,即在发达国家每1000个水点配2-3名职工,在发展中国家每1000个水点配4-8名职工。
水利的管理问题需要认真对待。在印度大多数公共服务和公用事业中,地方上的管理失当是一个重大弊端。如同在电力方面的情况,在供水方面因流失和浪费现象而付出了沉重代价:全国供水总量中流失的水占30-50%。以德里市政当局情况为例,除泄露流失的水达40%外还承担着15%的偷用水。全国平均只有24%的自来水有水表计量。在城市地区,由于下水道淤塞或抽水站不能正常工作,未经处理的污水经常溢出排水渠。在农村地区有些手动水泵坏了几个月而没人修理。在许多城市里,由于下水道淤塞、保养不善、抽水站经常停电等原因,产生的废水中只有一小部分能够进入到处理设施中进行处理。农村许多灌溉沟渠就是在田野上简单地挖掘出来的,大量的水根本流不到需要浇灌的庄稼那里。
管理水的部门多,需要协调好。印度中央政府对水的管理有好几个部门负责。农村的饮用水由农村发展部负责,城镇饮用水由城市发展部负责,地表水和地下水由水利部负责。农业和农村发展部门的工作需要与其他部门的水资源开发和保护计划进行整合,形成一致的办法。农村发展部制定的收集雨水、水流域开发的各种计划要与水利部和负责提供饮用水的各政府部门协商后才能实施。不同部委之间的有效协调和各种方案的衔接是必不可少的。2006年成立的国家旱作区管理局作为全国统一的机构在5个不同部委之间起协同作用,制定了提高8500万公顷非灌溉农田产量的计划。而在大多数邦里,都存在制定政策、管理资金和经济职能交叉重叠或分工不当的问题。印度出台的国家水利政策强调应该以综合协调的方式开发和管理水利。
在用水方面经常听到一种说法:由于人的生命离不开水,因此获得水应该是一种基本的人权,对所有的人都一样,最好是无偿的。另有一种说法是,在许多地方,水越来越珍贵,把用水作为一种权利只会使情况更糟,对水权收费是有效用水的一条理想途径。这体现出两种不同的价值观。在印度,许多地方因为水而引发了各种冲突。无论如何,社会正在接近一个不再把水当作免费物资的时代,水有可能会被作为可以贸易的货物。从长远来看,水权贸易有助于改善对水的管理。有些国家的实践表明,水权贸易帮助农民抵抗了干旱,促进了创新,在没有政府介入的情况下增加了投资。
印度水利面临着一个令人担忧的未来。国家水利委员会已经表明,水利的形势总体上是不平衡不稳定的,这种危机在一些流域已经显现,到2050年,印度对水的需求量将超过能够供应的量,现在约15%的含水层情况危急,在未来的25年这一比例将增长到60%。全国约15%的粮食生产依靠开采不可再生的地下水。最需要考虑的严重问题是怎样才能够,而且是必须把全国许多地区的用水需求降低到可以供应得上的程度。这一艰巨的又无法回避的任务需要使用者和供应者之间进行密切合作,例如成立授权的含水层用户协会。
正确的政策可以产生更好的用水效益,减少经济增长、人口增加带来的用水压力。需要努力取得进展的方面包括:(1)统筹协调与水利管理政策相关的部门(如农业)以及土地使用政策;(2)确保实行更为一致的污染者付费和使用者付费原则;(3)减少带来水利问题的补贴。减少能源补贴就是一项值得考虑的政策措施。目前这项政策使农民可以用很少的成本抽取地下水。再好的水资源管理也会被电力和水利补贴打消积极性。削减这种补贴有利于阻止农民用几乎免费的电力抽取便宜的但宝贵的水源过分地浇地。取消补贴的事拖得越久,地下水就越少;给的补贴越多,就越难以改变这种做法。现在印度农民对电力补贴的依赖性很大,大幅削减补贴会让他们受不了,因此政治上还不可行。这需要多方面来应对这个问题,如改进供电质量,对农民用电适当定价,制定一套“有效补贴”的方法等。
政府工作的重要性是不言而喻的。印度政府新近拟定的国家水利计划确定了5项目标:(1)建立广泛全面的水利资源数据库;(2)促进国家和国民节水,保水,增水的行动;(3)高度关注过度开发水资源的地区;(4)把水的利用效率提高20%;(5)提高流域一级的水资源综合管理水平。为了实现提高用水效率20%的目标,政府还准备采取鼓励循环利用水、开发水利技术的激励措施;制定城市供水系统效率、水利审计指南;审查财政和分配政策;开展先期研究。然而政府不是唯一的利益攸关者,也不是唯一需要为管理水利做决策的人。保证水安全的战略需要政府、投资人、非政府组织、工业和农业以及城市里水的用户共同努力才能奏效。
有印度学者呼吁说,技术、环境、社会、法规的变化都影响着水利的发展。因此政府迫切需要与各利益攸关者进行对话和沟通,并开展一场运动,让农民参与进来,使他们了解水利的现状,困难,前途,政策,任务,后果等。印度也许需要一种把各种方法措施综合起来的解决方案,包括改变亿万农民、工人和生活用水用户的行为习惯。
从喜马拉雅山流下来的雪水河:
印度水利情况综述 - 松花江的雪59-49 - 松雪的博客
巴特那的恒河:
印度水利情况综述 - 松花江的雪59-49 - 松雪的博客
印度自古就有挖井的习惯(台阶井):
印度水利情况综述 - 松花江的雪59-49 - 松雪的博客
印度现在城乡许多地方仍然这么取水:
印度水利情况综述 - 松花江的雪59-49 - 松雪的博客
岩溶水文地质与旱涝灾害
7. 4. 1 2010 年水资源规划及规划模型优化的必要性
黄河水利委员会完成的 《黑河流域东部子水系各灌区 2010 年规划月数据表》 ( 张掖地区水电处提供) ,规划张临高灌区农灌、林草、高新技术的灌溉面积分别为 65. 82×104亩、83. 69×104亩、64. 37×104亩,分别占规划灌溉面积 ( 213. 88×104亩) 的 31%、39%、30%,其中渠灌面积 176. 16×104亩、井灌面积 37. 72×104亩; 农灌、林草、高新技术的灌溉用水量分别为 4. 74×108m3、4. 61×108m3、2. 43×108m3,分别占规划灌溉用水量 ( 11. 79×108m3) 的 40%、39%、21%,其中渠灌用水量8. 57×108m3,井灌用水量 3. 23×108m3。数据表明高新技术可大量节约水资源,高新技术 21%的用水可灌溉 30%的耕地,而传统灌溉方式 40%的用水仅灌溉 31%的耕地,效果是显著的。2010 年规划工业与生活需水量 1. 29×108m3,其中工业与城市生活用水主要集中在张临高三县市,分别为 0. 93×108m3、0. 13×108m3,农村人畜用水 0. 22×108m3。2010 年规划张掖地区工业与生活用水仅占总用水量( 13. 08×108m3) 的 10%,农业与生态用水占到总用水量的 90% ( 表 7. 13~表 7. 15) 。
黄河水利委员会 2010 年规划张掖地区总用水量为现状用水量 ( 17. 23×108m3) 的 76%,即规划实施后每年可节约水资源 4×108m3。但 2010 年规划在不同保证率来水量时,灌区灌溉用水量及正义峡河道分配水量能否满足,如何能最大限度地给予满足,以及对河水入渗、地下水溢出、河道径流有何影响等问题,是人们极为关注的问题,这些问题都能通过水资源规划模型优化得以解决。
7. 4. 2 规划模型的资料准备
水资源规划仅考虑近期 ( 2010 年) 不同保证率莺落峡来水量的各灌区用水量与正义峡河道下泄量等优化问题,2010 年规划数据与参数主要依据黄河水利委员会 《黑河流域东部子水系各灌区2010 年规划月数据表》 确定。
现状水平年 ( 1999 年) 干支斗渠有效利用系数和井水利用系数已比较高,2000 年和 2001 年渠系利用系数基本稳定、略有下降,考虑到地下水补给量逐年减少的实际情况,干支斗渠有效利用系数不宜再提高,故 2010 年渠井水有效利用系数取现状水平年的值,并依此确定 2010 年的灌溉定额; 2010 年灌溉面积不宜再扩大,应以现状灌溉面积为限量值; 地下水允许开采量应首先满足生活与工业用水,故农灌地下水可用水量为地下水允许开采量减去工业生活需水量,以此值为农灌开采量的限量值。
表 7. 13 2010 年规划农灌、林草、高新技术灌溉面积和用水量表
注: 农灌*指传统灌溉方式,不含高新技术灌溉。
表 7. 14 2010 年规划渠、井灌溉面积和用水量表
表 7. 15 2010 年规划工业与生活需水量表
表 7. 16 水资源规划模型 2010 年规划数据与参数表
水资源规划模型 2010 年规划数据与参数列入表 7. 16,规划模型所需灌区两季灌溉比例系数、现状干渠引水量 ( 限量值) 、现状地下水开采量与开采影响系数、现状地下水溢出量、不同保证率的河道来水量和径流量及正义峡分配水量 ( 限量值) 等数据与参数已列于表 7. 2~表 7. 7。
地下水溢出量目前仍处于衰减态势,根据数值模拟地下水溢出量 10 年衰减率在 4% ~12%之间,平均衰减率为 8%。现状地下水溢出量为 9. 15×108m3/ a ( 表 7. 7) ,规划年 ( 2010 年) 地下水溢出量按衰减率8%计算为8. 42×108m3/ a。规划年各区段溢出量与月溢出量可按表 7. 7 中的地下水溢出量乘以 0. 92 折算,并以此计算结果作为模型中的地下水溢出量 ( T) 参与水资源规划。
莺落峡到大桥之间河水入渗量按非线性统计关系计算,可将非线性方程分莺落峡—草滩庄—大桥两段直接写入河泉节点水量平衡方程。
7. 4. 3 规划模型优化结果与分析
将上述表列数据与参数按不同保证率代入水资源规划模型,运行规划模型可给出不同保证率的灌区用水、干渠引水、地下水溢出与河水入渗、河道径流和正义峡下泄等优化结果,并可进行各种来水量的水资源分析研究。
7. 4. 3. 1 人工绿洲 ( 灌区) 用水与干渠引水
2010 年各灌区用水与干渠引水优化结果列入表 7. 17、表 7. 18,绘制的分析曲线见图 7. 14 ~ 图7. 17。不同保证率的各灌区用水基本上均能满足,仅保证率 98% 的新华灌区年缺水 0. 32×108m3,规划面积由 14. 43×104亩减少为 9. 12×104亩,减少 37%; 新华灌区缺水的原因是梨园河来水不足,但保证率 98%的西干和甘浚两灌区还有地下水开采潜力 0. 385×108m3,可通过增开西干和甘浚两灌区地下水,将调剂出的西总干渠水量配送梨园河灌区,以满足新华灌区的灌溉需水量,这在技术上是可行的,但涉及灌区间行政隶属等方面的制约需要协调。可见实现黑河干流统一管理与调配水源 ( 包括地下水和地表水) ,对灌区用水、节水等都是非常重要的。
图 7. 14 2010 年灌区规划地下水开采量与渠道引水量曲线
图 7. 15 2010 年不同保证率地下水总开采量与渠道总引水量曲线
表 7. 17 2010 年灌区开采量与渠道引水量优化成果表
注: * 仅保证率 98%的新华规划面积为 9. 12×104亩,其他保证率和所有灌区规划均达到限量灌溉面积,开采量与引水量保证率 2%、10%、25%的规划结果与多年平均的规划结果相同。
表 7. 18 2010 年干渠引水量优化成果表
注: ZU 为引水限量扩大系数 ( ∞为无约束) ; 西总干渠 R10= 0. 5,R17= 0. 5; 同灌一个灌区或同地引水的干渠合并; 渠道引水量保证率 2%、10%、25%的规划结果同多年平均规划结果。
图 7. 16 2010 年干渠限量引水量与规划引水量曲线
图 7. 17 2010 年不同保证率干渠引水量曲线
中游地区灌区用水大户是张掖灌区,灌溉面积 102. 73×104亩,年用水量 ( 5. 66~5. 74) ×108m3,其中开采地下水 ( 0. 52 ~ 0. 99) ×108m3,渠道引水 ( 4. 67 ~ 5. 22) ×108m3,地下水占总用水的比例为 10%~17%,毛灌溉定额为 551~559m3/ 亩; 临泽灌区次之,灌溉面积 68. 55×104亩,年用水量 ( 3. 49~3. 84) ×108m3,其中开采地下水 ( 0. 38 ~ 0. 72) ×108m3,渠道引水 ( 2. 78~ 3. 46) ×108m3,地下水占总用水的比例为 25%左右,毛灌溉定额 509 ~ 561m3/ 亩; 高台灌区最小,灌溉面积 40. 07×104亩,年用水量 2. 31×108m3,其中开采地下水 ( 0. 90 ~ 0. 91) ×108m3,渠道引水 ( 1. 40 ~ 1. 41) × 108m3,地 下 水 占 总 用 水 的 比 例 高 达 61%,毛 灌 溉 定 额 576 ~577m3/ 亩。
高台灌区地下水用水比例高是其地处张临灌区下游的结果,张临灌区用水后因剩余河流水量不足迫使高台灌区增开地下水,这与张临高灌区的灌溉现实是吻合的; 尽管这是迫不得已的,但它对降低高台灌区过高的地下水位以减少蒸发消耗和改良盐碱地都是有益的,同时该河段地下水溢出量小,对整个河道溢出量的影响也较小。
各灌区地下水开采量与干渠引水量,保证率 2%、10%、25%的规划结果与多年平均的规划结果相同,平、枯水年 ( 保证率 50%~98%) 的规划结果有一定的差异,这种差异主要出现在西干和甘浚及梨园河灌区,是梨园河平、枯水年来水量小不能满足灌区需水量,通过加大西总干渠引水量进行水量调配的必然结果。模型中引入了限量扩大系数,但各干渠引水量基本未超过限量值,仅梨园河东、西干渠在多年平均及保证率 50%的引水量超过了限量值,这说明规划模型具有优先使用梨园河水的优化策略。不同保证率的灌区用水量基本稳定,模型利用地下水库调节功能,通过地表水与地下水的联合调配,实现了水资源的稳定利用。
7. 4. 3. 2 地下水溢出与河道径流
2010 年各河段地下水溢出 ( 负值为河水入渗) 与河道径流优化结果列入表 7. 19、表 7. 20,绘制的分析曲线见图 7. 18~图 7. 22。
不同保证率的河水入渗量变化较大,这与河水径流快、径流量变化大有关; 莺落峡来水量的保证率为 2%~98%时,对应莺落峡到大桥河水入渗量为 ( 4. 79~4. 03) ×108m3/ a,张掖盆地河水总入渗量为 ( 6. 09~4. 19) ×108m3/ a,河水入渗量均随保证率的提高而降低。不同保证率的地下水溢出量基本稳定,主要与地下水径流速度慢、补排的滞后性及储存量的调节作用等有关; 大桥到正义峡河段地下水溢出量 ( 7. 14 ~ 7. 53) × 108m3/ a,张掖 盆地地下水 总 溢 出 量 ( 8. 15 ~ 8. 54) ×108m3/ a。
地下水溢出量在不同河段变化很大,最大溢出段在大桥到塘湾河段,溢出量( 5. 71~6. 09) ×108m3/ a,占总溢出量的 71%; 最 小 溢 出 段 在 马尾 湖 到 正 义峡 河 段,溢 出 量 为 ( 0. 09 ~ 0. 10) ×108m3/ a,仅占总溢出量的 1. 2%; 地下水累积溢出量从大桥到正义峡沿河道呈现快速增长—慢速增长—极缓慢增长的变化特点。
表 7. 19 2010 年河流节点间地下水溢出量优化成果表
表 7. 20 2010 年河流节点径流量优化成果表
注: * 为已知数据,山丹河与九眼泉源头水量为 0。
图 7. 18 2010 年不同保证率地下水溢出量曲线
图 7. 19 2010 年地下水区间溢出量沿流程变化曲线
图 7. 20 2010 年地下水累积溢出量沿流程变化曲线
图 7. 21 2010 年不同保证率河道节点径流量过程线
图 7. 22 2010 年各河流节点径流量保证率线
不同保证率的河道径流量沿流程的变化规律基本一致,但河段的径流增长率或衰减率有一定的差异。莺落峡—大桥为河道径流快速减少河段,河道径流衰减率随保证率的提高而增大,草滩庄之上主要受渠道引水控制,径流衰减率较大,为 30%~69%; 草滩庄之下主要受河水渗失影响,衰减率相对较小,在 15%~52%之间。大桥—正义峡的河道径流受渠道引水与地下水溢出双重因素控制,因引水量与溢出量在不同河段的差异,使其影响下的河道径流呈现增长与衰减的交替变化规律; 大桥—塘湾河段,地下水溢出量远大于渠道引水量,河道径流呈较快增长变化,特别是大桥—高崖河段增长率高达 32%~282% ( 随保证率的提高而增加) ,高崖—塘湾河段增长率变化在2% ~ 6%之间; 塘湾—正义峡河段,因渠道引水量略大于地下水溢出量,河道径流总体呈慢速减少变化,其中塘湾—芦湾墩河段径流衰减率 1%~8%,芦湾墩—马尾湖河段径流衰减率 ( 或增长率)在零附近变化,马尾湖—正义峡河段径流衰减率为 1%~3%。
不同保证率河道径流沿流程的变化规律的一致性,反映了河道径流对来水量的依赖性; 河道径流量的变化体现的各影响因素强弱的变化,说明通过控制渠道引水可改变河道径流,当然改变河水入渗或地下水溢出同样会影响河道径流。
不同河流节点的径流量与保证率关系曲线的形态基本类同,河流节点径流量随保证率的提高均呈减少的变化特征,但各河流节点的平均减少率都有一定的差异,莺落峡、草滩庄、大桥、高崖、唐湾、芦湾墩、马尾湖、正义峡八个河流节点的减少率分别为 52%、78%、88%、65%、65%、65%、65%、66%。与莺落峡相比,其下游河流节点径流量的减少率有所增大,因不同保证率的河水入渗量与地下水溢出量变化不大,说明高保证率的河道径流受渠道引水影响更大,这是在枯水年份渠道引水时要特别注意的。
7. 4. 3. 3 正义峡河道下泄量
2010 年正义峡河道下泄量等优化结果列入表 7. 21、表 7. 22,绘制的分析曲线见图 7. 23 ~ 图7. 25。不同保证率的各期正义峡河道下泄量与其相应限量值 ( 即分配水量) 对比,全年所有保证率水平年的下泄量均能满足分配水量,多下泄 ( 0. 60~3. 73) ×108m3; 春夏灌期 ( A) 在保证率90%水平年的下泄量不能满足分配水量,少下泄 0. 12×108m3,其他保证率水平年均能满足分配水量,多下泄 ( 0. 10~3. 17) ×108m3; 夏冬灌期 ( B) 在保证率 50%水平年的下泄量不能满足分配水量,少下泄 0. 81×108m3,其他保证率水平年均能满足分配水量,多下泄 ( 0. 22 ~ 2. 84) ×108m3;非灌溉期 ( C) 所有保证率水平年的下泄量都不能满足分配水量,少下泄 ( 0. 59~1. 43) ×108m3。
表 7. 21 2010 年正义峡下泄量优化成果表
表 7. 22 2010 年不同保证率各期水量优化成果汇总表
正义峡全年下泄量能够满足分配水量,反映了张掖盆地节水规划 ( 即降低灌溉定额) 实施后是有明显效果的。灌溉期 ( A、B) 下泄量基本能满足分配水量,但不同保证率水平年的多下泄水量变化较大,说明莺落峡来水量年内水量变化的随机性对正义峡下泄量的年内分配有显著影响,这在水资源管理和统一调配时是要给予重视的; 可利用地下水库多年调节功能,通过多开或少开地下水消除来水量的随机变化给下泄量带来的影响,从理论上这是可行的,但实际操作是有难度的,涉及来水量的实时预报和下泄量的准确预测及调度等多方面的技术和管理工作。非灌溉期( C) 在所有保证率水平年的下泄量都不能满足分配水量,这可能与分水方案该期的分配水量设置“高”有关,因为这时期模型中没有设置干渠引水,河道下泄应为自然下泄; 事实上该期干渠仍有少量引水供平原水库蓄水,河道下泄量还会再少一些。
正义峡全年及灌溉期 ( A、B) 的下泄量总体上随保证率的提高而减少,但保证率 50%水平年的 A、B 两期下泄量出现了 “异常”,这是该水平年 A 期来水量较其他水平年偏高、B 期来水量较其他水平年偏低造成的,同样也说明了来水的年内变化对下泄有显著影响; 不同保证率的非灌溉期 ( C) 下泄量基本稳定,这与该期河道径流基本不受降水及渠道引水影响有关,下泄量基本反映了南部山区地下水泄出及张掖盆地地下水溢出在不同保证率水平年的变化情况。
图 7. 23 2010 年不同保证率正义峡下泄量与其限量对比曲线
图 7. 24 2010 年不同保证率正义峡各期下泄水量曲线
图 7. 25 2010 年各期不同保证率水量对比曲线
7. 4. 4 规划模型优化有关问题的讨论
7. 4. 4. 1 正义峡下泄量约束问题
模型中采用了 “全年与季节 ( A、B、C) 下泄量最大可能同时满足分水方案”的目标函数max = D1+D2,以及 “全年与季节下泄量至少有一个满足分水方案”的约束条件 D1+D2≥1。优化结果是在灌区灌溉需水量基本能够满足的情况下,丰水—枯水年的 0、1 决策变量 D1= 0、D2= 1,即仅能保证全年下泄量满足分水方案,不能保证季节下泄量满足分水方案。
如果采用 “全年与季节下泄量必须同时满足分水方案”的约束条件 D1+D2= 2,则规划模型在丰水—枯水年是无解的,因为 C 期的河道下泄水量无法满足分水方案; 如果进一步解除 C 期的约束 ( 即 C 期下泄量无约束) ,规划模型优化结果必然是 “全年与季节下泄量同时满足分水方案”,而灌区灌溉需水量在保证率 50%、90%水平年不能够全部满足及保证率 98%的新华灌区需水量不能满足,原因是保证率 50%、90%水平年的 A、B 两期莺落峡来水量出现了 “异常”及保证率98%的梨园河来水量不足。这些问题都可通过利用地下水库多年调节功能加以解决。
显然,只要去掉非灌溉期 ( C) 的正义峡下泄量的约束,规划模型优化结果基本上可同时满足灌区灌溉需水量及全年与灌溉期正义峡下泄分配水量。
7. 4. 4. 2 地下水溢出量衰减问题
模型是在现状 ( 1999 年) 地下水溢出量 ( 表 7. 7) 的基础上,按 10 年平均衰减率 8%折算溢出量进行 2010 年规划的,2010 年地下水溢出量较现状将减少 0. 73×108m3。
1999 年到 2010 年地下水补给量的变化受多种因素制约很难准确预测,故很难确切把握地下水溢出量变化的发展趋势。如果 1999~2010 年地下水补给量保持现状基本不变,而地下水溢出量仍是要衰减的,根据数值模拟计算 ( 表 4. 39) 2010 年地下水溢出量较现状减少 0. 35×108m3。事实上,补给量还可能将进一步减少,因此在规划模型中将地下水溢出量减少了 0. 73×108m3,尽管不很准确,但毕竟考虑了地下水补给量减少带来溢出量衰减的影响。
如果 1999~2010 年地下水补给量有很大的变化,将会对地下水溢出量产生显著的影响,其影响程度可参见 “补给量对溢出量的影响”( 表 4. 37) 。当未来补给量是增大的,无疑会对正义峡下泄量产生有益的影响; 当未来补给量是减小的,其对正义峡下泄量的影响将取决于减小的程度。2010 年规划的正义峡下泄量较分配水量有一定的余地,只要地下水溢出减少量不大,就不会对正义峡年下泄量产生大的影响,但会对年内各季下泄量产生较大影响。
实现水资源规划目标,不仅需要降低干渠 ( 灌区) 引水量,而且需要控制地下水溢出量的衰减,要从根本上控制地下水补给量的持续性减少,这些仍然是应引起高度重视,并积极采取有效措施而常抓不懈的工作。
7. 4. 4. 3 地下水库调节作用发挥问题
张掖盆地地下水库容积储存量巨大,含水层每 10m 厚度即储存地下水量 78×108m3( 面积7802km2、给水度 0. 1) ,具有很强的多年调节功能; 充分发挥地下水库的调节作用,可最大限度地满足灌区灌溉需水量,也可最大程度地保证正义峡河道下泄水量,使有限的水资源得以合理利用。
规划模型计算时长为 1 年,年内划为 3 个时段,规划模型各方案的优化结果,都在该时间尺度内已充分利用了地下水库的调节功能,将地表水与地下水作为一个整体互为补充、联合调度,使水资源得以充分而合理的利用,满足了规划的各方面要求,实现了规划预定目标。
受规划模型计算时长的限制,对地下水库的多年调节功能未能得以发挥,也就出现了模型中水资源在个别保证率年、个别时段不能全部满足灌区灌溉需水量或正义峡夏冬灌期 ( B) 分配水量的情况; 这些因莺落峡来水量的随机性变化,使个别保证率年、个别时段出现的来水量 “异常”,都能通过加长规划模型计算时长,利用地下水库多年调节功能得以消减,从而全部满足灌区灌溉需水量或正义峡灌期 ( A、B) 分配水量。
本节以广西为例,讨论岩溶区的洪涝和干旱问题及其与水文地质结构的关系。广西地处东亚季风区,地域性降雨量分布和季节性降雨量分配都不均,冬半年易旱,夏半年易涝,夏季虽属雨季,夏旱也时有发生,旱涝交替出现。这与岩溶区复杂多样的地表、地下双层结构关系密切。
4.4.1 广西旱涝灾害概况
4.4.1.1 岩溶洪涝历史概况
广西是我国典型的岩溶区之一,地表岩溶峰林地貌景观发育,地形复杂多样,地下是复杂的岩溶洞穴系统,包括地下河洞穴系统。广西86个市县中,有78个市县分布有碳酸盐岩(包括覆盖型),占广西市县数的93.03%,其中碳酸盐岩分布面积大于30%的岩溶市县45个,占广西市县数的63.95%,这些岩溶市县均有岩溶干旱和洪涝灾害发生,有的县年年发生旱涝灾害。
就广西全区而言,在历史上就有洪涝灾害或水灾的记载。洪涝灾害多发生在两大类地区,一类是大中型河流的沿岸地区,特别是河流的中下游地区;二类是岩溶地貌区,尤其是峰丛洼地区。前者一般称为沿江易涝区,后者称为岩溶内涝区。对于岩溶内涝,1950年以前很少有记载,之后才有一些零星记载,但多数仍以洪涝灾害的形式而记载。据调查,沿江沿河发生洪涝灾害时,岩溶山区亦同时发生内涝灾害,而岩溶山区内涝发生时,沿江沿河不一定发生洪涝灾害。据此认为,广西历史上记载的水灾发生,亦同时发生了内涝灾害。
据广西壮族自治区通志馆“广西各市县历代水旱灾害纪实”,广西从东汉永初元年(107年)对水灾开始有记载,宋代以来,这方面的记载资料就逐渐多了起来,从元代开始水灾的记载相对较为详细,具体统计结果见表4-9。
表4-9 广西历代水灾统计表
全广西,从东汉永初元年(107年)到清末宣统三年(1911年),1804a中有335a发生水灾,平均5.4a发生1a。其中明代平均2.8a发生1a,每年发生1.8次;清代平均1.4a发生1a,每年发生2.8次。但各地情况有所不同,发生频率长短各异。虽然历史资料记载不全,但对我们分析洪涝灾害仍具参考价值。民国时期的38a中,连年发生水灾,平均每年发生8.6次。新中国成立后的1950~1994年的45a中,亦每年发生水灾,平均每年发生30.7次。
从表4-9还可知道,广西的洪涝灾害主要发生在夏季,夏季的洪涝灾害多是由暴雨造成的,夏涝次数占全年洪涝次数的67.63%,其次为春涝,占全年洪涝次数的19.69%,再次为秋涝,占全年洪涝次数的12.63%。洪涝与暴雨有直接关系,但在岩溶峰林地貌分布区,往往是由大量的涌水而形成的。
从地区分布来看,春涝和夏涝比率桂北高于桂南,秋涝的比率桂南最高,桂东次之,桂北和桂西较少。从实际分布来看,不同的地区有其自身的特点。一般来说,洪涝频率高的地区,平均每年洪涝灾害次数也多。就广西全区平均状况而言,6月份发生洪涝灾害的机会最多,占全年洪涝次数的30%,其次是7月份,占21%,5月和8月分别占17%和19%,4月和9月分别占7%和6%。
根据统计资料,1950~1994年,水灾非常频繁,一年中受灾面积愈来愈广,灾情愈来愈重。如与民国时期相比,若以一年受灾市县数占全广西市县数的24%~34%为第一个期限,则民国时期出现洪涝有5年次,1950年后有11年次;若以35.6%~46%为第二个期限,则民国时期只有2年次,而1950年后有9年次。若以阶段性年代发生最多水灾年排列,也发现1950年后水灾市县有加重发展的趋势(表4-10)。1994年5月下旬至7月中下旬,广西先后受到4次大暴雨和特大暴雨的袭击,造成特大洪涝和内涝灾害,受灾市县达84个,是1950年以来受灾面最广的一次。
表4-10 1950年后广西水灾发展趋势
4.4.1.2 内涝灾害
广西岩溶洼地发生内涝是岩溶石山县的普遍问题。据20世纪80年代初的调查资料,碳酸盐岩分布面积大于60%的27个岩溶石山县的洪涝面积达93.27万亩,占耕地面积的8.0%,其中岩溶内涝面积为54.89万亩,占洪涝面积的58.85%。在1000亩以上连片分布较大洼地的内涝面积近20片,如东兰县的三石—巴纳为7000亩、泗孟3000亩、巴马县的西山为4000亩、凤山县的金牙—平乐内涝面积达1.05万亩、凌云县的沙里3000亩、隆安县的布泉1.2万亩、天等县的龙洞—孔民1.5万亩、大新县的福隆8000亩。其余都是数十亩至数百亩的小片内涝地,分布于峰丛洼地之中。又据1990年的统计资料,碳酸盐岩分布面积大于30%的55个岩溶石山县的内涝面积约92万亩,占耕地面积的6%。
岩溶内涝多发生于岩溶洼地中,内涝积水的消泄速度取决于内涝积水深度和积水量,以及地下管道的消泄水能力。一般小面积的洼地,汇水范围小,积水量有限,并有一定消水能力,若发生内涝,一般在2d内即可消退,农作物受灾程度较轻。内涝程度较重的洼地,消水时间亦长,可达3个月以上。如1968年6~8月,东兰县大雨频繁,降雨量为1359.1mm,接近正常年份总降水量,三石区的纳合、巴王、巴造、纳腊等地发生严重内涝灾害,农田受灾面积1.33万亩,被淹没107d,房屋倒塌600多间,公路中断3个月。又如1966年7月上旬,连降大暴雨,凤山县的金牙乡上牙村和下牙村发生内涝,农田被淹3000多亩,70余户民房被淹,内涝时间持续3个月,颗粒无收。
岩溶内涝受降雨的控制,往往是一年发生2~4次,有时发生6次,如1959年5月10~11日,连降80mm以上的大雨,6月份又连降大雨,全月降水量400mm,其中6月13日降水量199mm,8月11~12日又连降大雨,降雨量180mm,马山县古寨乡大面积岩溶洼地被淹,全年农作物受内涝灾害面积62679亩,失收20477亩。又如1985年5月8日至6月9日,乐业县逻西、幼平、新化、马庄等地先后3次暴雨,造成涝灾,降水量分别为77.5mm、159mm和100mm,受灾农田1615亩,造成2个月公路交通中断,冲毁水利设施340多处、房屋两座,影响灌溉面积2841亩,公路塌方1.8万m3,冲垮涵洞34座,并造成人员和大牲畜的伤亡。各项经济损失总计为81万元。
4.4.1.3 干旱历史概况
广西处于温热多雨气候区,人均降水资源和人均水资源量都位居全国前列,似乎不应该存在干旱灾害问题。实际上,广西不仅有旱灾之害,而且有些地方还相当严重。究其原因:一是降水量的时间分配不能满足农作物的生长需求;二是地表水文网不完善,特别是岩溶地区尤其突出,虽有大江大河,但河谷深切,加之山石阻碍,自流引水有诸多困难,而江河支流少,许多地段没有常年性支流,甚至没有支流;三是岩溶峰丛山区地下水埋藏深度大,开发利用困难。
按干旱发生季节划分,广西有春旱、夏旱、秋旱和冬旱。从全区范围来说,春旱年年有,只是发生的地点和程度不同,直接影响春播生产的完成。夏旱主要影响早稻后期生长和晚稻插秧用水,同时也影响旱地作物的生长。秋旱主要影响秋收作物的后期生长,影响秋收作物的产量。冬旱对农业生产影响较小,因为大多数农作物已在冬季前收获。相对来说,春秋干旱对广西农作物生产的影响最大。夏旱对早稻后期生长、晚稻插秧和甘蔗生长会产生严重的影响,但发生夏旱的几率不多。
广西旱灾的记载开始于公元714年,以后的记载资料就逐渐多了起来,记载内容也越来越详细,具体统计结果见表4-11。
从唐开元二年到清末宣统三年,共发生旱灾371a,平均3.2a发生1a。其中宋代平均14.3a发生1a,元代平均6.7a发生1a,明代平均3.1a发生1a,清代平均1.5a发生1a。民国时期的38a中,年年发生旱灾,平均每年发生7.2次。新中国成立后的43a中,亦连年发生旱灾,平均每年发生46.1次。从表4-11还可以看出,广西的干旱灾害主要发生在秋季和春季,秋旱和春旱次数分别占旱灾总次数的39.22%和35.89%,夏旱为24.89%。干旱灾害与气象因素有直接关系,但在岩溶地区,还与岩溶环境条件有关。
表4-11 广西历代旱灾统计表
表4-12 1950年后广西旱灾发展趋势
根据资料统计(表4-12),1950~1992年,旱灾频繁发生,灾情愈来愈重。总体而言,43a中,严重干旱的年份(受旱市县数占全区市县数的24%~50%)有24a,占55.81%,特大干旱的年份(受旱市县数占全区市县数的>50%)有10a,占23.26%;秋旱发生的次数多于春旱,春旱多于夏旱;一年中出现的旱灾次数多,时间长,1963年是最严重的干旱年,受灾市县数达79个,占全区的90.80%,旱灾次数142次,其中春旱54次,夏旱57次,秋旱31次,受旱面积800万亩,粮食损失4亿kg,人畜饮水困难;连续发生严重旱灾的年份多,1953~1958年6a、1960~1966年7a、1974~1981年8a、1983~1992年10a,其中1988~1992年连续5a发生特大干旱灾害。
4.4.1.4 岩溶区的干旱
广西岩溶石山区共有67片大于5000亩干旱片,耕地面积257万亩,其中分布于岩溶平原和谷地之中219万亩,占85.21%土地,分布于峰丛洼地的耕地38万亩,仅占14.79%。这类干旱土地集中连片,小片数千亩,大片超过5万亩,地势平坦,土层较厚,交通方便,治理这类旱片,投入少、效益高、见效快。
(1)岩溶山区
大江大河深切成数百米的大峡谷,两岸是连绵数十至数百、千米的峰丛洼地地形,山高水低,又有数百至数千座石山阻碍,土地和居民散布于一个个独立的深数百米、直径不过100~200m的封闭洼地之中,水土资源相互脱节,不仅农田用水无法解决,而且多数居民的饮用水也无法解决,用“水贵如油”来形容并非是夸大之词。广西400万缺水人口80%分布于该地区,真正的困难是这类地区农民耕作的约300万亩土地都是靠天下雨的自然农业,旱涝由天决定。
(2)岩溶谷地和平原
岩溶谷地和平原区有大面积连片的土地,在自然经济条件下,人们近水而居,开垦耕种最近泉、近河地段的土地,尚有大量宜农荒地闲置。20世纪五六十年代在红水河、西江、左江等许多河沿岸先后建立国营农场,同时建造了许多抽江河水的大型抽水站和配套的渠道网,除灌溉国营农场土地外,也使附近农民受益。在长达20多年里,广西绝大多数农场亏损经营,农场和农民都长期拖欠水费。而在冬春几个月非灌溉季节,抽水站为节约开支而不抽水,农场职工吃水比农民还难。进入市场经济时期,几乎所有大型抽水站都先后停止运营,曾经靠抽水灌溉的农民又复受旱,原有的旱地继续受旱。
“大跃进”时期,广西在岩溶地区修建有1252座中小型水库,总库容35.4×108m3,设计灌溉面积356万亩,实际灌溉面积250.5万亩,其中多数有渗漏问题,渗漏或不能蓄水的水库644座,历经30a的技术处理,仍有51%(计644座)水库不能正常蓄水或不能蓄水。
总之,广西干旱主要在岩溶地区,其原因是大量雨水、地表水都漏入地下,使地表缺水。虽经几十年在地表搞蓄、引、提等地表水开发工程,许多地方仍然受旱。我们认为,应该下决心针对岩溶区的实际,因地制宜,分别采用不同的方法,就近分散开发利用岩溶地下水。广西金光农场地处左右江交汇的三角区,搞了20多年地表水,连年亏损(亏损还有其他原因),各分场无水吃。20世纪80年代就近分散开发地下水,2a解决9个分场吃水,3a扭亏,5a彻底翻身。金光农场治旱的经验值得各有关部门、有关地市县认真思考、借鉴。
4.4.2 广西旱涝灾害的基本特点
4.4.2.1 岩溶内涝的基本特点
(1)分布特点
岩溶内涝灾害是岩溶区普遍存在的岩溶生态环境问题之一,从岩溶地貌分区来看,主要发生在峰丛洼地区,常呈线状或串珠状分布,这与岩溶系统的结构有关。在峰丛谷地、峰林谷地和峰林平原等地貌区内涝也时有发生。岩溶内涝在国内外都是比较常见的,如南斯拉夫特列比西尼察流域等,以及我国的广西、云南、贵州、湖南等省(区)的岩溶石山区。从宏观的地域来看,岩溶内涝问题多发生在湿润气候的热带、亚热带岩溶环境区,这也是这类岩溶环境区的一个特点。
(2)周期性特点
岩溶洼地内涝的发生具有周期性的特点。在每年的汛期,特别是5~8月降水量较大时,有些岩溶洼地必然出现内涝,导致周期性的季节性受淹,这种内涝一年可发生1~4次,多者达7次或8次,雨后即通过地下河管道逐渐消退,淹没时间长短不一,短者只有几天,长者可达3个月之久,有时被称为季节性岩溶湖。因受水文网的控制,不同的岩溶洼地一年内发生内涝的次数和淹没时间虽然不同,但年年雨季重复出现则是相似的。
(3)突发性特点
岩溶洼地突发性内涝是指有些地区在连降大雨、暴雨的情况下才发生的内涝,一般为10a或数10a一遇,或者是从未发生过内涝,但由于地下河系统(或岩溶洼地系统)的传输通道被堵塞,或因泥沙淤积、崩塌物堆积而造成过水断面减少,必导致内涝的突然发生。在人类活动影响下,特别是森林植被破坏、水土流失和石漠化、不合理的平整土地,使得很多洼地已由突发性内涝演变成周期性内涝,并使内涝逐年加重。
(4)多发性特点
是指岩溶洼地每年发生内涝的次数在2次以上,也即一年内多次发生内涝灾害。年平均内涝次数的多少,大体上可以反映出某一岩溶石山区在一年内可能发生内涝的程度。暴雨多的岩溶石山区内涝多,暴雨少的岩溶石山区内涝少,广西平均每年发生2次内涝以上的岩溶石山区主要有凌云、凤山、东兰、巴马、都安、马山、上林、融安、永福、桂林、靖西、天等、那坡等地。在凤山内涝次数最多的年份中,大部分石山区都有4次左右的内涝发生,在都安、巴马等红水河沿岸地区超过6次,使内涝时间持续3个月之久,如东兰的板文、凤山的金牙、大化的大调等内涝片。
(5)群发性特点
群发性是指在某一岩溶区域内,甚至是整个岩溶石山区,岩溶洼地内涝同时在分散分布于峰丛之间的众多个洼地中发生。受峰丛洼地的分布、大气降水影响、岩溶洼地系统结构及输入输出条件的控制,内涝往往呈现出星罗棋布于独立存在的岩溶洼地的个体之内,常常成群出现,有时呈线状排列,有时呈羽状、树枝状展布。这还与地下河系统和地表水文网的布局有关。
(6)岩溶内涝与非岩溶区的差异
内涝的形成受其所在地自然环境、社会经济条件、技术管理水平、人类活动等因素的制约,过量的降雨是内涝发生的主要原因,地形地貌、土壤植被、地质条件与内涝的发生关系密切。非岩溶区的内涝灾害一般是由当地的降雨形成,源于过量的地表水汇流于地形低洼处而成灾,多发生在广阔的平原区浅洼地区。当降雨量所形成的地表径流模数超过农田排水模数时,田间积水的时间与水层深度超过了农作物的耐涝能力,便造成被淹,使农作物减产而形成灾害。灾害的严重程度与降雨强度、持续时间、次降水总量和分布范围大小有关。岩溶区的内涝灾害的形成,还因地下河上游来水量大,水位上升溢出地表淹没洼地,或因地表河流水位上涨和修建水库抬高了河水位,淹没了地下河或岩溶泉出口,河水顶托补给岩溶地下水,通过地下河天窗、落水洞溢出地表而成内涝,光耀华等(2001)称之为岩溶浸没内涝;或因岩溶洼地四周表层带和包气带的季节性岩溶泉和季节性地下河雨后大量涌水而造成内涝。岩溶内涝灾害的严重程度不仅与降雨有关,还与地下河系统的输入和输出条件关系密切。
4.4.2.2 干旱的特点
从旱灾出现的情况来看,广西全区平均每1.5年就有一年全区性春旱或秋旱或夏旱。秋旱和春旱几乎年年都有发生,但秋旱以局部性居多,全区性较少,夏旱多属局部性,出现大范围夏旱的机会较少,冬旱也几乎年年发生。干旱的时间长、范围广、危害重,例如1977年春,有61个县(市)发生不同程度干旱,其中连续3个月以上的有35个县(市),连续4个月以上的有18个县(市),受旱作物面积535万亩;1972年夏,53个县(市)受旱灾,其中21个县(市)连旱30~40d。1980年秋旱,9、10两个月连旱数十日,桂西和桂南有20~30d,桂中有30~40d,桂东、桂北达40~50d,全区受旱灾作物面积达1029万亩。旱年多为连续出现,1957~1980年间共有16个旱年,其中连续出现的有12a,占旱年总数的75%。
从干旱灾害的地区分布来看,春旱的地域差异十分明显,春旱的出现频率由桂西南的53%,至桂东北逐渐减少为39%,以桂西的春旱最为严重,其次是沿海、桂南;广西水稻春旱频率的基本情况是:百色地区和南宁、钦州两地区西部及南宁市出现频率在80%以上,其中百色、田阳两县市高达100%;河池地区、柳州地区南部、南宁地区东部、钦州地区南部出现频率为60%~80%;玉林地区和柳州地区中部为40%~60%;柳州地区东南部、桂林地区南部和梧州地区大部为20%~40%;其余地区小于20%,其中桂林地区东北部基本无春旱。
夏旱出现的频率平均在37%~50%之间,以桂中的夏旱最为严重,其次为桂南、沿海;广西夏旱以柳州地区南部、柳州、梧州、桂林地区北部和南宁地区南部出现频率较高,在40%以上,其中武宣、象州、柳州、全州、资源等县(市)达60%;河池、百色、钦州3地区和玉林地区南部以及金秀、昭平、贺县频率较低,在20%以下。其余地区在0~40%之间。
广西秋旱的地域分布恰与春旱相反,即大体上桂东重于桂西,桂北重于桂南。秋旱频率高值区有3个:①以全州、兴安为中心的桂东北秋旱区,10a有6~7年秋旱;②以柳州为中心的桂中秋旱区,10a也有6~7年秋旱;③以扶绥、上思为中心的桂南秋旱区,10a有4~5a秋旱;其余地区10a有1~4a秋旱,其中凤山和东兰等地最少,仅9a一遇。
冬旱的频率在 46%~57%之间,以桂中的冬旱最为严重,其次是沿海、桂西。
4.4.3 水文地质对旱涝灾害的影响
广西岩溶地貌组合形态主要表现为峰丛洼地、峰丛谷地、峰林谷地和峰林平原等典型的热带-亚热带岩溶地貌。峰丛山区的特点是大片连座分布的山体之间形成洼地和谷地等负地形,峰体相对高度200~500m,甚至更大。峰丛山区的侵蚀基准面较低,地下水位埋深大,因而包气带厚度大,且不同的地域存在较大的差异,一般厚度在数十米至200m,有些地方可达500m以上。在封闭的峰丛洼地和峰丛谷地,没有地表排水出路,几乎所有的大气降水以渗入和注入的方式输入地下水系统,因此,落水洞、竖井、天窗、漏斗、地下河及地下洞穴系统发育。在峰丛洼地系统与平原、谷地、河流的交界地带,常出露地下河出口和岩溶泉。峰体的洞穴多为干溶洞,洞体规模大小各异,有时垂向发育,有时成层分布,有时垂向洞穴和横向洞穴组成复杂的洞穴系统。在洼地或谷地底部一带或以下地带的洞穴多为地下河或充水溶洞,成层发育。地下河是峰丛洼地谷地的主要泄水通道,其过水断面基本固定,大小各异,有的地下河高大且宽阔,输水能力强,有的矮小且狭窄或某一部位为瓶颈状洞道,输水能力较差,狭小的地下河过水断面就是岩溶内涝形成的内在因素,当然包括狭小的落水洞。在地下河系统的过水断面基本固定的前提下,在适宜的降雨条件下,岩溶洼地的汇水量大,而落水洞或地下河输水能力小而排泄不及时,岩溶洼地谷地内就形成内涝。
岩溶洼地、岩溶谷地、甚至是岩溶平原,在汛期,特别是暴雨过程,岩溶管道水压上升,水位超越地下河管道,使地下水涌入洼地、谷地、平原,或地表水汇流于洼地、谷地、平原等而产生内涝。即使在非雨季节,地下河通道局部受阻而壅水,或人工水体回水造成地下河水泛滥亦可产生内涝。由于岩溶作用和岩溶空间介质的高度不均匀性,尤其是封闭的岩溶洼地谷地没有完整的地表水网络系统,造成岩溶洼地内涝的发生、发展和演化趋势具有其特殊性。
岩溶地区的干旱和洪涝灾害的形成是自然因素和人类活动共同作用的结果,主要致灾因素除水文地质结构影响外,还包括气象与水文、地形与地貌、地质与水文地质、植被与水土流失,以及人类活动等。自然因素固然重要,但在一定的降水条件下,人类活动似乎强于自然因素。过量的降雨是形成岩溶洪涝的主要原因,而长期的无雨则是形成岩溶干旱的主要原因,但这些都不是必然因素,还与岩溶水系统的结构特征、输入和输出条件、环境状况有关。森林植被的破坏,水土流失和石漠化等人类活动造成的影响因素构成一个复杂的具有因果关系的致灾链,它们既共同作用于岩溶旱涝,又独立对岩溶旱涝发挥着作用。生态环境的破坏,加剧了旱涝灾害的发生,加重了灾害程度,旱涝的发生又对岩溶生态环境造成破坏。