一元一次方程
选择题
1.已知(x+y)∶(x-y)=3∶1,则x∶y=( )。
A、3∶1 B、2∶1 C、1∶1 D、1∶2
2.方程-2x+ m=-3的解是3,则m的值为( )。
A、6 B、-6 C、 D、-18
3.在方程6x+1=1,2x= ,7x-1=x-1,5x=2-x中解为 的方程个数是( )。
A、1个 B、2个 C、3个 D、4个
4.根据“a的3倍与-4绝对值的差等于9”的数量关系可得方程( )。
A、|3a-(-4)|=9 B、|3a-4|=9
C、3|a|-|-4|=9 D、3a-|-4|=9
5.若关于x的方程 =4(x-1)的解为x=3,则a的值为( )。
A、2 B、22 C、10 D、-2
答案与解析
答案:1、B 2、A 3、B 4、D 5、C
解析:
1.分析:本题考查对等式进行恒等变形。
由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化简得:x+y=3x-3y,
得2x-4y=0,即x=2y,x∶y=2∶1。
2.分析:∵ 3是方程-2x+ m=-3的解,
∴ -2×3+ m=-3,
即-6+ m=-3,
∴ m=-3+6,——根据等式的基本性质1
∴ m=6,——根据等式的基本性质2
∴ 选A。
3.分析:6x+1=1的解是0,2x= 的解是 ,7x-1=x-1的解是0,5x=2-x的解是 。
4.略。
5.分析:因为x=3是方程 =4(x-1)的解,故将x=3代入方程满足等式。
一、 多变量型
多变量型一元一次方程解应用题是指在题目往往有多个未知量,多个相等关系的应用题。这些未知量只要设其中一个为x,其他未知量就可以根据题目中的相等关系用含有x的代数式来表示,再根据另一个相等关系列出一个一元一次方程即可。
例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可。
解:设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电 度。依题意,得:
解得:
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
二、 分段型
分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。
例二:(2005年东营市)某水果批发市场香蕉的价格如下表:
购买香蕉数
(千克) 不超过
20千克 20千克以上
但不超过40千克 40千克以上
每千克价格 6元 5元 4元
张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?
分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克。由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元。我们再分两种情况讨论即可。
解:
1) 当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+5(50-x)=264
解得:x=14
50-14=36(千克)
2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+4(50-x)=264
解得:x=32(不符合题意)
答:第一次购买14千克香蕉,第二次购买36千克香蕉
例三:(2005年湖北省荆门市)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )
住院医疗费(元) 报销率(%)
不超过500元的部分 0
超过500~1000元的部分 60
超过1000~3000元的部分 80
……
A、1000元 B、1250元 C、1500元 D、2000元
解:设此人住院费用为x元,根据题意得:
500×60%+(x-1000)80%=1100
解得:x=2000
所以本题答案D。
三、 方案型
方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程。
例四:(2005年泉州市)某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。
(1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数;
(2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人。请你求出该校初三年级学生的总人数。
分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15
用40座客车的辆数表示总人数:40(x-2)+35。
解:(1)该校初三年级学生的总人数为:30x+15
(2)由题意得:
30x+15=40(x-2)+35
解得:x=6
30x+15=30×6+15=195(人)
答:初三年级总共195人。
四、 数据处理型
数据处理型一元一次方程解应用题往往不直接告诉我们一些条件,需要我们对所给的数据进行分析,获取我们所需的数据。
例五:(2004年北京海淀区)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 6:00 4小时 264千米
请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 264千米
解:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 4:24 2.4小时 264千米
分析:通过表一我们可以得知提速前的火车速度为264÷4=66千米/时,从而得出提速后的速度,再根据表二已经给的数据,算出要求的值。
解:设列车提速后行驶时间为x小时. 根据题意,得
经检验,x=2.4符合题意.
答:到站时刻为4:24,历时2.4小时
例六:(2005浙江省)据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站的里程数(单位:千米) 1500 1130 910 622 402 219 72 0
例如,要确定从B站至E站火车票价,其票价为 (元).
(1) 求A站至F站的火车票价(结果精确到1元);
(2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).
解: (1) 解法一:由已知可得 .
A站至F站实际里程数为1500-219=1281.
所以A站至F站的火车票价为 0.12 1281=153.72 154(元)
解法二:由已知可得A站至F站的火车票价为 (元).
(2)设王大妈实际乘车里程数为x千米,根据题意,得: .
解得 x= (千米).
对照表格可知, D站与G站距离为550千米,所以王大妈是D站或G站下的车
.
若10的m次方=20,10的n次方=5分之一,求9的m次方除以3的2n次方的值
答案10^m÷10^n=20÷1/5
10^(m-n)=100=10^2
所以m-n=2
9^m÷3^2n
=9^m÷(3^2)^n
=9^m÷9^n
=9^(m-n)
=9^2
=81
75÷〔138÷(100-54)〕 85×(95-1440÷24)
80400-(4300+870÷15) 240×78÷(154-115)
1437×27+27×563 〔75-(12+18)〕÷15
2160÷〔(83-79)×18〕 280+840÷24×5
325÷13×(266-250) 85×(95-1440÷24)
58870÷(105+20×2) 1437×27+27×563
81432÷(13×52+78) [37.85-(7.85+6.4)] ×30
156×[(17.7-7.2)÷3] (947-599)+76×64
36×(913-276÷23) [192-(54+38)]×67
[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)
5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]
(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)
812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6
85+14×(14+208÷26) 120-36×4÷18+35
(284+16)×(512-8208÷18) 9.2
×1.6-18.305÷7
4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10
12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6
85+14×(14+208÷26) (58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)
0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6
120-36×4÷18+35 10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52
32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)
[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6
5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6
3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6
5.8×(3.87-0.13)+4.2×3.74
初二数学计算题
[(2x5+2)(4x7+2)(6x9+2)......(2002x2005+2)]/[(1x4+2)(3x6+2)(5x8+2)......(2001x2004+2)]
问题补充:求过程
如果你把分子看做[(n+1)(n+4)+2]这样的组合就清楚多了,因为[(n+1)(n+4)+2]=n^2+5n+6=(n+2)(n+3) ,而每两个相邻的乘数之间间隔为2,所以分子可以看做(n+2)(n+3)(n+4)(n+5)...
因此分子是3*4*5*6*...*2003*2004
同理分母可以化为2*3*4*5*...*2002*2003
这样分子分母将相同因子消掉得到:
[(2x5+2)(4x7+2)(6x9+2)......(2002x2005+2)]/[(1x4+2)(3x6+2)(5x8+2)......(2001x2004+2)]
=(3*4*5*6*...*2003*2004)/(2*3*4*5*...*2002*2003)
=2004/2
=1002
(1-1/2?)(1-1/3?)(1-1/4?)……(1-1/100?)
1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4)……(1-1/100)(1+1/100)
=1/2×3/2×2/3×4/3×3/4×……99/100×101/100
=1/2×101/100
=101/200
2x-6/4-4x+x^2除以(x+3)*(x+3)(x-2)/3-x
[(x^2+2x-3)/(x+3)]×[-(x-3)(x-2)/(X-3)]
=-(x-1)×(x-2)
=-X^2+3x-2
请采纳。
1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
设送货人员有X人,则销售人员为8X人。
(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154
X=14
8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员
3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
8.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。
根据题意得:1-15%X+1+25%2300-X=2300
解之得:931
答:下半年生产931台。
10.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288m
11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?
慢马每天走150里,快马每天走240里,慢马先走十二天也就说明慢马与快马出发前的距离为150×12=1800里,然后快马出发,快马每天走240里,但是当快马追赶慢马的时候,慢马也在行走所以用快马的速度减去慢马的速度240-150=90里,这就是快马一天的追赶速度,快马与慢马之间相差1800里,而快马一天追赶90里,所以1800÷90=20天就是慢马追上快马的天数
12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。
解设每箱有x个产品
5台A型机器装:8x+4
7台B型机器装:11x+1
因为(8x+4)/5=(11x+1)/7+1
所以:x=12
所以每箱有12个产品
13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?
设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分
14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
解:设乙每小时加工(x-2)个,则甲每小时加工x个 。
根据工作效率和乘时间等一工作总量:
[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲
16-2=14 (个)…… 乙
答:则甲每小时加工16个,乙加工14个 。
15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度.
1分钟=60秒
设火车长度为x米,则根据题意可以得到
火车的速度为(1000+x)/60
因此[(1000+x)/60]*40=1000-2x
解得x=125
(1000+x)/60=(1000+125)/60=1125/60=18.75
所以火车速度为18.75米每秒,长度为125米
16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?
解: 设分配x人去生产螺栓,则(28-x)人生产螺母
因为每个螺栓要有两个螺母配套,所以螺栓数的二倍等于螺母数
2×12x=18(28-x)
解得 x=12 所以28-x=28-12=16
即应分配12人生产螺栓,16人生产螺母
17.在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个中共有448粒?
由已知,糖相当于一个公比为2的等比数列An,并且有An=2^(N-1)
要求从几格开始的连续三个中共有448粒,设这一格糖数为An,由等比数列求和公式
[An(1-2^3)]/(1-2)=448,解得An=64=2^(N-1),得N=7
故从第7格开始的连续三个中共有448粒
18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
解:设乙每小时加工(x-2)个,则甲每小时加工x个 。
根据工作效率和乘时间等一工作总量:
[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲
16-2=14 (个)…… 乙
答:则甲每小时加工16个,乙加工14个 。
19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语的有几人?
设懂汉语的X人,则英语的为3X+3人
懂英语的,加懂汉语的肯定大于等于30-10
3X+3+X >= 30-10 (大于等于)
懂英语的肯定不超过30-10,即小于等于
3X+3 <= 30-10
17/4 <= X <=17/3
得X=5人 (X必须得是整数)
则3X+3=18人
即懂英又懂汉的则为 18+5-20=3人
20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏
商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏
设第一套的成本是X
X*[1+25%]=135
X=108
盈利:135-108=27元
设第二套的成本是Y
Y[1-25%]=135
Y=180
亏损:180-135=45元
所以,总的是亏了,亏:45-27=18元
21.一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
设:需要X只玻璃杯
3*3*3.14*10*X = 5*5*3.14*35
X = 5*5*35/3*3*10
X = 9.7
答:需要10只玻璃杯
22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?
设总工作量是x,师傅的效率是x/4,徒弟的效率是x/6,总效率是5x/12,徒弟一天干了x/6剩下5x/6,那么他们共同完成的时间是5x/6除以5x/12得2天,说明总共用了3 天每天是150元师傅和徒弟的效率比试3:2那么共同2天的钱应该3:2分师傅得得钱是180元,徒弟的钱是120+150=270元
23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?
解:设四月份节约x千克。
x+(1+20%)x+(1+20%)x+25%*(1+20%)x=3700
x+1.2x+1.2x+0.25*1.2x=3700
3.7x=3700
x=1000
6月份=四月份*(1+20%)(1+25%)
那么就等于:
1000*(1+20%)*(1+25%)=3700(千克)
经检验,符合题意。
答:该食堂六月份节约煤3700千克。
24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?
父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?
设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分
25.一支队伍长450m,以90/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2倍,此人往返共用多长时间?
90/分 是每分钟90米吗?下面就是以90米每分的速度计算的 90米/分=1.5米/秒
从排头到排尾的时间为t,
1.5t+2X1.5t=450 t=100秒
在从排尾到排头的时间为t1
1.5t+450=2 X 1.5t t=300秒
所以总共需要400秒
26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?
解 设原价为X元,则现价为(X-0.3)元
36除X=36除(X-0.3)-4
这样解麻烦死了,一般楼上的解不出来才让你解
我的方法:解 设原价为X元,则现价为(X-0.3)元
36/X乘0.3=4乘(X-0.3)
10.8=4X的平方-1.2X
2.7=X(X-0.3)
X=1.8
27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分.
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?
(2)两人同时同地同向跑,问几秒后两人第一次相遇时?
1、设:两人x分钟后相遇
(360-240)x=400
120x=400
x=400/120
x=10/3
两人一共跑了(360+240)*10/3/400=5圈
2、
应该是:“两人同时同地反向跑”吧
设:两人x分钟后相遇
(360+240)x=400
600x=400
x=400/600
x=2/3
2/3分钟=40秒
28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?
可以假定甲列车不动,则乙列车相对甲列车的速度就为60+75=135千米/小时;两车从车头相遇到车尾相离一共走了150+120=270米=0.27千米
则所求时间t=0.27/135=0.002小时
29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)
设需要t秒,设那段时间小车行走的距离为s1=30.56t(110km/h=30.56m/s) 卡车 s2=27.78t(100km/h=27.78m/s) 而小车要超过卡车需要比卡车多走12+4*2=20米。即s1=s2+20代入后得t=7.2秒。
30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)
=(340+20)*4/2-20*4=640(米)
式中20是汽车的速度 20m/s=72km/h
声波的速度为340m/s
车速为72km/h=20m/s
声波4秒走340*4=1360m
车4秒走 20*4=80m
设听到声音时汽车距山谷x米
则2x=1360-80
x=640
31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?
设答对了x题
4x-(25-x)=85
5x=110
x=22
答对了22题
32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶内的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
1.解:在一个底面直径5cm、高18cm的圆柱形瓶内装满水,水的容积为:V1=18*π (5/2)^2=(225/2)π=112.5π (注:^2是平方的意思,这是电脑上面的写法)
一个底面直径6cm、高10cm的圆柱形玻璃瓶,能装下的水的容积是:V2=10*π(6/2)^2=90π;
显然V1>V2,所以不能完全装下,第一个圆柱形瓶内还剩22.5π的水;
设第一个瓶内水面还高Xcm,建立方程如下:
X*π(5/2)^2=22.5π
解得X=3.6
所以第一个瓶内水面还有3.6cm的高度
33.某班有45人,会下象棋的人数是会下围棋的3.5倍,2种都会或都不会的都是5人,求只会下围棋的人数。
解:设只会下围棋的人有X个。
根据题意有如下方程:
(45-5-5-X)+5=3.5(X+5)
40-X=3.5X+17.5
X=5
所以只会下围棋的人有5个
答:只会下围棋的人有5个
34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
丙同学说得对,理由如下:
解:设某同学得了N分,选对了X题,那么不选或选错的就是25-X;
那么得分N=4X-1*(25-X)=5X-25=5(X-5)
所以显然,不管选对了多少题,那么得分永远是5的倍数;
所以3个同学中,只有丙同学说得对。
35.某水果批发市场香蕉的价格如下
购买香蕉数 不超过20kg 20kg以上但不超过40kg 40kg以上
每千克价格 6RMB 5RMB 4RMB
张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?
设买香蕉数分别为 x 和 y
则有方程
6x+5y=264
x + y=50
得x= 14 y=36
平均是264/50大于5元。所以只能是单价6和5或者6和4的组合。两种方程解出来。结果一看就知
以上回答你满意么?