环境管理包括解决美国的环境问题和促进环境管理。该领域的研究包括可选择性的能源系统、环境风险和经济影响评估、有害垃圾场分析和补救计划编制、电冶金处理准备失去效能的核燃料进行处理,以及排除污染和使老化核反应堆退役的新技术。阿贡在开发管理和解决美国环境问题、促进环境服务新方法中处于前沿。
国家安全对美国和阿贡研究的重要性提高。数年来,阿贡为此目的所开发的能力正帮助美国抗击恐怖主义的威胁。这些能力包括核燃料循环、生物学、化学、系统分析和系统建模方面的专门技术。该项研究正在帮助开发探测化学、生物和放射性威胁以及识别它们来源的高灵敏度仪器和技术。其他研究正帮助探测和阻止武器的可能扩散或实际攻击。
为使阿贡受公众资助的研究让工业界受益,帮助加强美国的技术基础,阿贡也将工业技术开发作为一项重要的工作。
阿贡教育计划部为从主要的国家大学到地区初中的全体教员和学生提供广泛的教育机会。阿贡参加教育计划的人比任何其他能源部的国家实验室的人都多,每年培训1000名研究生和博士后研究人员的工作已经作为他们正常研究与开发活动的一部分,以帮助公众了解科学,提高美国人的科学、工程和数学水平的责任。
阿贡设计、建造、运行和/或管理许多科学和工程研究设施,并将这些设施向来自工业界、学术界和其他政府实验室的研究人员开放。这些设施中的6个属于美国能源部正式的国家用户设施或用户中心。它们是:先进光子源、串列直线加速器系统、大气辐射测量气候研究设施、纳米尺度材料中心、电子显微中心和强脉冲中子源。
这些复杂、造价昂贵的设施,一个公司或大学无法建造和运行,作为国家科学资源加以管理。
阿贡还有许多对来自工业界、学术界和其他国家实验室的研究人员开放,收取成本费的实验室和研究设施。在谈判的基础上,研究成果根据用户的决定可以私人拥有或在公开文献上发表。如研究成果在公开文献上发表,研究人员能够免费使用这些设施。如果成果属于私人拥有,收取设施使用费一般根据运行费的回收情况加以确定。
研究人员可使用的其他实验室和设施有:
2-MeV直线加速器;3-MeV静电加速器;锕类设备;先进计算试验台;先进动力系试验设备;气溶胶实验室;阿儿法-伽吗热室设施;分析化学实验室;大气边界层实验;大气场测量设备;汽车粉碎残余物实验室;基础能源科学同步辐射中心;电池分析和诊断实验室;钴60源((20,000居里);柴油机试验设备;地区冷暖供应模拟器;电气化学能的储存;电渗析典型实验设备;电子显微实验室-阿贡-西场所;工程开发实验室;泡沫浮选分离典型试验设备;燃料电池试验设备;燃料调节设备;高温电解炉设备;热性燃料检查设备;辐照材料实验室;激光应用实验室;激光实验室;磁成像设备;磁共振成像设备;溶解腐蚀和冷却能力实验(MACE);微型质谱仪实验室;毫米波实验室;中子放射照相术反应堆;非破坏性的评估实验室;非破坏性的评估试验负载系统设施;非破坏性的评估显微镜设备;优质煤取样设备;动力系和放射实验室;脉冲电子直线加速器;RDT&E稀释设备;反应堆模拟设备;机器人技术实验室;安全分析培训中心;芒硝设备试验工厂;结构生物学中心;摩擦学实验室。
ANL的诺贝尔奖获得者
1938年,恩里科费米(Enrico Fermi,1901-1954)因利用中子辐射发现新的放射性元素,及慢中子所引起的有关核反应,获1938年诺贝尔物理学奖。
1963年,Maria Goeppert Mayer(女)因研究原子核壳模式取得的成果而分享1963年诺贝尔物理奖。
2003年,Alexei Abrikosov 因其提出的在极端低温时物质如何显示其奇异行为理论获得瑞典皇家科学院颁发的诺贝尔物理奖(与他人分享该奖)。
阿贡国家实验室所长:Robert Rosner
阿贡国家实验室副所长:Don Joyce
负责业务的首席官员:Adam Cohen
一个是反渗透压脱盐
一个是离子交换法脱盐
反渗透:RO(Reverse Osmosis)反渗透技术是利用压力表差为动力的膜分离过滤技术。反渗透法通常又称超过滤法,反渗透膜属新材料范畴,是一种用高分子化学材料特殊加工制成的、具有半透性能的薄膜。它能够在外加压力作用下使水溶液中的某些组分选择性透过,从而达到淡化、净化或浓缩分离的目的。反渗透法的最大优点是整个过程中无水相变化,能耗较少,而且设备投资省、建设周期短。它的能耗仅为电渗析法的1/2,蒸馏法的1/40。反渗透海水淡化的技术关键在于反渗透膜、高压泵、能量回收装置和系统优化设计技术。
反渗透特点
1、分离介质:分子扩散膜,也称半透膜。
2、截留因素:水溶液的渗透压和浓度。
3、分离对象:分子态和离子态溶解物。
RO反渗透膜孔径小至纳米级(1纳米=10-9米),在一定的压力下,H2O分子可以通过RO
以离子交换剂上的可交换离子与液相中离子间发生交换为基础的分离方法。广泛采用人工合成的离子交换树脂作为离子交换剂,它是具有网状结构和可电离的活性基团的难溶性高分子电解质。根据树脂骨架上的活性基团的不同,可分为阳离子交换树脂、阴离子交换树脂、两性离子交换树脂、螯合树脂和氧化还原树脂等。用于离子交换分离的树脂要求具有不溶性、一定的交联度和溶胀作用,而且交换容量和稳定性要高。
离子交换反应是可逆的,而且等当量地进行。由实验得知,常温下稀溶液中阳离子交换势随离子电荷的增高,半径的增大而增大;高分子量的有机离子及金属络合阴离子具有很高的交换势。高极化度的离子如Ag+、Tl+等也有高的交换势。离子交换速度随树脂交联度的增大而降低,随颗粒的减小而增大。温度增高,浓度增大,交换反应速率也增快。
离子交换分离广泛用于:①水的软化、高纯水的制备、环境废水的净化。②溶液和物质的纯化,如铀的提取和纯化。③金属离子的分离、痕量离子的富集及干扰离子的除去。④抗菌素的提取和纯化等